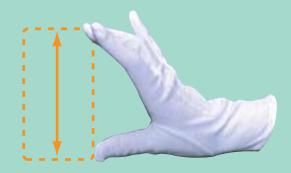
COMPACT INVERTER FOR GENERAL-USE VS mini J7

200V CLASS (THREE-PHASE) 0.1 TO 3.7kW (0.13 TO 5HP) 200V CLASS (SINGLE-PHASE) 0.1 TO 1.5kW (0.13 TO 2HP) 400V CLASS (THREE-PHASE) 0.2 TO 3.7kW (0.25 TO 5HP)

JQA-0422 JQA-EM0498

LITERATURE NO. KAE-S606-12F



Instant Upgrade for Your Small Machinery!

The VS mini J7 inverter delivers the solution for all those users who want to easily upgrade small machinery to variable-speed drives. Turn your machinery into the optimum drive through our powerful performance and rich array of functions. Try the compact, economical VS mini J7 for simple operation and maintenance.

Only 128mm Tall

Compact design means it fits into your panel efficiently. And with global specifications: certified under UL/cUL and CE standards, they are available in both 200V (3-phase/single-phase) and 400V (3-phase) series. Power supply harmonics are also controlled so our inverters can be used safely anywhere in the world.

ULUS Note: When the filt

Simple Operation

The main circuit terminals are arranged in upper and lower rows, so you can wire it up just like a contactor. For operation, just turn the frequency volume setting knob. The entire design is user-friendly through-and-through, such as one-touch cooling fan replacement.

Upgrade Your Machinery

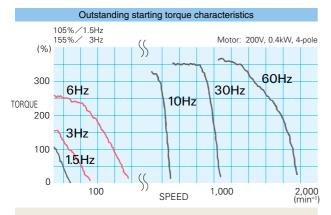
Because the motor can be fully controlled, it is easier than ever to adjust conveyor and mixer speeds, or pump and fan flow rates. Inverter functions deliver the optimum drive at a reasonable cost (see application examples on page 5). Just snap it on, and just like magic! Your inverter is transformed.

 \star

 $\mathbf{\star}$

Note: When using CE standard inverters, the special EMC conformed noise filter is required. Contact your YASKAWA representative.

CONTENTS


OPERATION METHOD	6
STANDARD SPECIFICATIONS/ DIMENSIONS	8
STANDARD WIRING/ CONSTANTS LIST	- 11
PROGRAMMING	16
PROTECTIVE FUNCTIONS	28
NOTES ON USE	-31
OPTIONS/PERIPHERAL	-35
UNITS	

Major Features of the VS mini J7

Full-range automatic torque boost

•Delivers outsanding starting torque (150%/3Hz) for its class, for smooth machinery start-up.

Even for a single given machine, the required motor torque will vary with the load conditions. The full-range automatic torque boost function automatically adjusts V (voltage) in V/f as required. The VS mini J7 can adjust V for the required torque during acceleration as well as during constant-speed operation. The inverter calculates the required torque automatically.

Full range of protective functions

•High-speed current-limiting function minimizes overcurrent trips (above 250% of rated current) for enhanced tripless operation (restart after momentary power loss, stall prevention function, fault retry, etc.)

Inrush current suppression circuit is built in.

Diverse operating methods and functions

•Multi-step speed operation (up to nine steps), UP/DOWN operation and jog operation.

•Full range of functions, including slip compensation, overtorque detection and high-speed search.

Wide range of input/output

•Multi-function I/O terminals, 0-10V, 4-20mA or 0-20mA inputs, as well as analog monitors are available.

•Application freedom is increased since multi-function inputs can be set to PNP or NPN.

Supprot for RS-232C and RS-485/422 (MEMOBUS protocol) available as options.

Simple installation and wiring

•The main circuit terminals are arranged in upper and lower rows, so you can wire it up just like a contactor.

•Main and control circuit terminals are screw-type, for simple wiring and improved reliability.

•One-touch mounting/detaching with DIN rail attachments.

Just wire it up and run!

• Frequency volume setting knob located on the control panel (operator) as a standard feature. Immediate operation after you supply power.

•If remote operation is required, the optional operator and cable can be mounted on your control panel.

Simple maintenance

 One-touch mounting and/ or detaching. The life of the cooling fan is extended by a cooling fan ON/OFF control.

Simple constant management

Removable cooling fan

• The operator has a copy function for constant upload/download.

• A support tool using a PC is also available.

Power supply high-harmonics suppressed

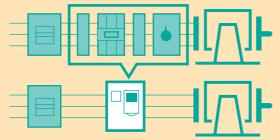
An optional DC reactor can be connected, and of course AC reactors are also available.

Efficient layout in panel

•Compact design means smaller volume requirements, and because dimensions are uniform for all 128mm-height (5.04 inches) models, your panel layout is simplified, too.

(Example of 200V, three-phase, 0.1kW model) 200V 3-phase 0.1 to 0.75kW Single-phase 0.1 to 0.4kW

200V 3-phase 1.5 to 3.7kW Single-phase 0.75 to 1.5kW


Perfect for these applications:

Replacing contactors

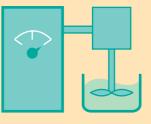
Provides maintenance-free operation by eliminating contacts.

Dimensions in mm (inches)

(see page 9 for details)

Replacing single-phase motors

Improve efficiency by replacing a single-phase motor with a 3-phase motor.


Machine standardization

By mounting an inverter, the same machine can be used regardless of the frequency of the power supply (50 or 60 Hz).

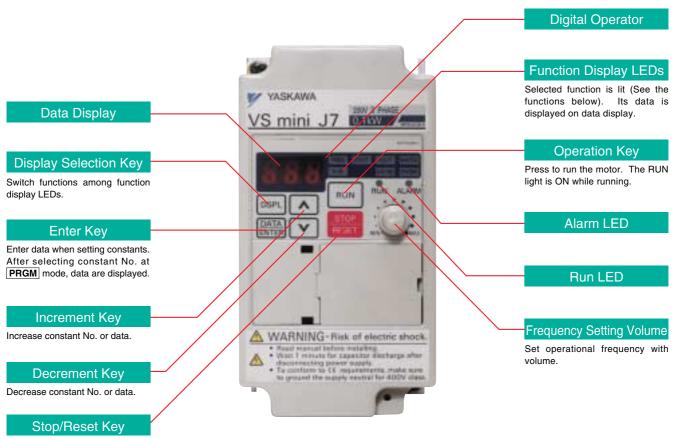
Food processing machinery

Multi-step speed operation (maximum of nine steps) can be set in advance to handle a wide range of processing operations and materials.

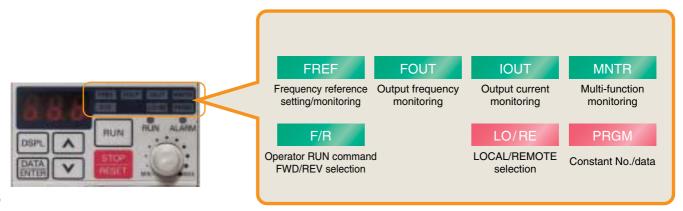
Conveyors

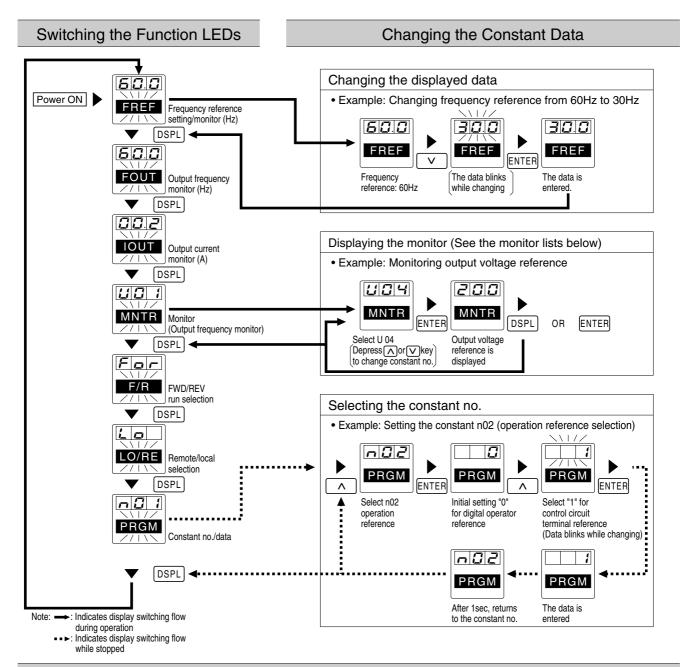
Prevent load from toppling with soft starts and stops, using the multi-step speed features (maximum of nine steps) to vary conveyor speed.

■Mass-flow machinery (pumps and fans)


Smooth variation in motor rotation speed means optimal flow rate control, delivering energy-saving operation.

OPERATING DIGITAL OPERATOR


VS mini J7


Display and Keypad Description

Press to stop the motor. If fault occurs, reset the inverter.

Function Display LED Description

Monitor (MNTR) Lists

Constant No.	Monitor	Unit
U 01	Frequency reference (FREF)*	Hz
U 02	Output frequency (FOUT)*	Hz
U 03	Output current (IOUT)*	Α
U 04	Output voltage (1V unit) Example: 200V	v
U 05	DC voltage (1V unit) Example: 300V	v
U 06	Input terminal status	_
U 07	Output terminal status	-
U 09	Fault history (The last four faults are displayed.)	-
U 10	Software No. (Four digits of PROM are displayed.)	-

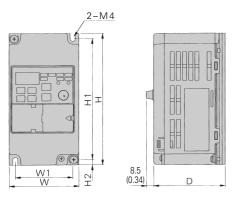
* The digital operator LED is not lit

Fault display method

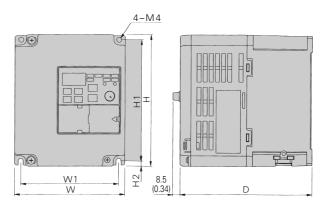
 $\boldsymbol{\cdot} \operatorname{Display} \operatorname{format}$

: 3-digit, 7-segment LED

Fault description example: " $\mathcal{EF} \exists$ " is displayed at EF3 fault. "---" is displayed when there is no fault.

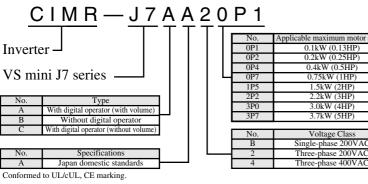

Clearing fault history

Set the constant n01 to "6," then the n01 data returns to the previous value. Or initialize the constant, then n01 returns to the default setting.


STANDARD SPECIFICATIONS

	Voltage Clas	s		:	200V sin	gle-/ thre	e-phase					400\	/ three-p	hase								
		Three-	20P1	20P2	20P4	20P7	21P5	22P2	23P7	40P2	40P4	40P7	41P5	42P2	43P0	43P7						
CIMF	Model R-J7A	phase Single ^{*1} phase	B0P1	B0P2	B0P4	B0P7	B1P5				—	—		<u> </u>								
Max. A	Applicable Motor		0.1 (0.13)	0.2 (0.25)	0.4 (0.5)	0.75 (1)	1.5 (2)	2.2 (3)	3.7 (5)	0.2 (0.25)	0.4 (0.5)	0.75 (1)	1.5 (2)	2.2 (3)	3.0 (4)	3.7 (5)						
Rated I	Input Current*3 A	Three-phase Single-phase	1.1 1.8	1.8 3.5	3.9 7.4	6.4 12.8	11.0 20.5	15.1	24.0	1.6	2.4	4.7	7.0	8.1	10.6	12.0						
S	Inverter Capa		0.3	0.6	1.1	1.9	3.0	4.2	6.7	0.9	1.4	2.6	3.7	4.2	5.5	6.5						
listi.	Rated Output 0	Current A	0.8	1.6	3	5	8	11	17.5													
Output Characteristics	Max. Output V	oltage V		, 200 to 23 hase, 200					ge)	17.5 1.2 1.8 3.4 4.8 5.5 7.2 8.6 3-phase, 380 to 460V (proportional to input voltage)												
ਤ ਤ	Max. Output F	requency						40	0Hz (Pro	grammab	le)											
Power Supply	Rated Input and Frequ			, 200 to 23 hase, 200						3-phase	, 380 to 4	60V, 50/6	60Hz									
S d	Allowable Voltag								-15 to	+10%												
	Allowable Frequen								±5													
	Control Me							Sine		M (V/f co	ntrol)											
	Frequency Cont									400Hz												
s	Frequency A (Temperature	Change)						Analog r	eference:	.01% (-10 ±0.5% (2	5±10°C)											
Control Characteristics	Frequency S Resolut	on				Digita	al reference Analog		e: 1/1000	n 100Hz) of max. c 1Hz			more)									
raci	Output Frequency Overload Ca						14	50% rated		urrent for	one minu	ta										
Cha	Frequency Refere			0.1	o 10VDC	(20kO)	4 to 20m		-				a volume	(selectab	le)							
0	Accel/Dece			01	0 10 VDC		to 999 sec				-	-	-	(selectab	ie)							
Conti	Accel/Dece				Short-		age decel	eration to	uque*4 : C		/ (0.13HF	, 0.25HP		more;								
	Braking To	orque					0	1.5k	W (2HP):	50% or r	nore;	с,										
Braking Torque 1.5kW (2HP): 50% or more; 2.2kW (3HP) or more: 20% or more Continuous regenerative torgue: Approx. 20%																						
			Possible to program any V/f pattern																			
	Motor Overload Instantaneous O		Electronic thermal overload relay Motor coasts to a stop at approx. 250% of inverter rated current																			
	Overloa				,		ists to a st															
	Overvolt		Motor c	oasts to a					minute a				C bus vol		ed 820V							
Ictions	Undervol	-	Stops w	hen DC b . 160V or	us voltag	e is appro	x. 200V c						e is appro	-								
ve Fur	Momentary Loss		(TT)			s are sele	ctable: No							uous oper	ation							
- 							1			0.5s or shorter, continuous operation												
otec	Cooling Fin C	Verheat			Individual level stall prevention can be set during acceleration or constant running, provided/not provided setting available during deceleration								eleratior									
Protective Functions	Stall Preve	Overheat	Individu	al level sta	ll preventi	on can be		acceleratio					led setting		Protected by electronic circuit (fan lock detection)							
Protec	Stall Preve Cooling Far	Overheat ention n Fault	Individu	al level sta			Protec	acceleratio	ectronic c	ircuit (fan	lock dete	ection)										
Protec	Stall Preve Cooling Far Ground Fa Power Ch	Overheat ention n Fault ault ^{*5} arge	Individu		Protec	cted by el	Protec ectronic c	acceleratio ted by ele ircuit (op mes 50V	ectronic c eration le or less. R	ircuit (fan vel is app UN lamp	lock dete rox. 2509 stays ON	ection) 6 of rated	output cu	urrent)	vs ON.	Ground Fault*5 Protected by electronic circuit (operation level is approx. 250% of rated output current) Power Charge Indication ON until the DC bus voltage becomes 50V or less. RUN lamp stays ON or digital operator LED stays ON. (Charge LED is provided for 400V) Four of the following input signals are selectable: Forward/reverse run (3-wire sequence), fault reset, external fault						
Protec	Stall Preve Cooling Far Ground Far Power Ch Indicati	Dverheat ention n Fault ault* ⁵ arge on nction	Four of (NO/NC (NO/NC	ON ur the follow contact i contact i	Protect ntil the Do ving input nput), mu nput), spo	cted by el- C bus volt signals a ilti-step speed search	Protect ectronic c tage become re selecta peed oper n comman	acceleratio ted by eld ircuit (op mes 50V (Charge ble: Forw ation, Jog d, UP/DC	ectronic c eration le or less. R LED is p rard/rever comman OWN con	ircuit (fan vel is app UN lamp rovided fo se run (3- d, accel/d umand, ac	tock deterox. 2509 stays ON or 400V) wire sequ lecel time ccel/decel	ection) 6 of rated or digital ence), fau select, ex hold com	output cu operator alt reset, e tternal bas mand, LO	urrent) LED stay external fa seblock DCAL/RE	ult	election						
	Stall Preve Cooling Far Ground Far Power Ch Indicati	Dverheat ention n Fault ault* ⁵ arge on nction ut	Four of (NO/NC (NO/NC communi Followin (output	ON ur the follow	Protect til the D ving input nput), mu nput), spo ontrol circ signals an \leq or \geq se	cted by el- C bus volt signals a ilti-step sp eed search cuit termi re selectal tt value), o	Protect ectronic c tage becom- re selecta peed oper n comman nal select ble (NO/N during over	acceleration ted by electric ted by electric t	ectronic c eration le or less. R LED is p vard/rever comman DWN con gency sto t output): detection,	ircuit (fan vel is app UN lamp rovided fo se run (3- d, accel/d mand, ac p fault, er Fault, run minor ern	lock dete rox. 250% stays ON or 400V) wire sequ lecel time ccel/decel mergency nning, zer ror, during	ection) 6 of rated or digital ence), fau select, ex hold com stop alarr o speed, s g basebloo	output cu l operator ult reset, e tternal bas mand, LC n, self tes speed agre ck, operat	urrent) LED stay external fa seblock DCAL/RE t t eed, frequ ion mode	ult EMOTE se ency dete , inverter	ction run						
Other Functions Protect	Stall Preve Cooling Far Ground Fa Power Ch Indicati	Averheat ention h Fault ault*5 arge on nction ut nction put	Four of (NO/NC commu Followii (output ready, d Full-ran injection speed se	ON ur the follow 2 contact i 2 contact i 1 contact i 1 contact i 1 contact i 1 contact 1 contact	Protect til the DO ving input nput), mu nput), spontrol cir signals au \leq or \geq set t retry, du atic torqu current at uency up	cted by el c bus volt signals a lti-step sj eed search cuit termi re selectal t value), d irring unde e boost, s stop/star per/lower	Protec ectronic c tage becon re selecta peed oper a comman nal select: ble (NO/N during ov- ervoltage lip compet t (50% of limit sett	acceleration ted by ele- ircuit (op- mes 50V (Charge ble: Forwation, Jogo d, UP/DC ion, emer; iC contace ertorque of detection inverter r ing, over	cetronic c eration le or less. R LED is p ard/rever comman DWN con gency sto t output): letection, , reverse 1 D-step spe- rated curre	ircuit (fan vel is app UN lamp rovided fo se run (3- d, accel/d mand, ac p fault, en Fault, run minor en running, d ed operati ent, 0.5 se	lock dete rox. 2509 stays ON or 400V) wire sequ locel time cel/decel nergency nor, during luring spe ion (max. c, or less) equency j	cction) 6 of rated or digital ence), fat select, ex- hold com stop alarri- o speed, s g basebloo ed seach,), restart <i>a</i>), frequen ump, acce	output ct operator lt reset, c ternal baa mand, LC n, self tes speed agre ck, operat data outp	urrent) LED stay external fa seblock DCAL/RE t eed, frequ ion mode ut throug entary po cee bias/g me switcl	ency dete , inverter h commu- wer loss, ain, fault	DC retry, ecel						
	Stall Preve Cooling Far Ground Fa Power Ch Indicati Standard Fu Standard Fu	Averheat Intion In Fault ault*5 arge on nction ut nction put	Four of (NO/NC (NO/NC commu Followin (output ready, d Full-ran injection speed se prohibit	ON ur the follow 2 contact i 2 contact i 1 contact i 1 contact i 1 contact i 1 contact 1 contact	Protect til the DO ving input nput), mu nput), spontrol cir signals au \leq or \geq set t retry, du atic torqu current at uency up	cted by el c bus volt signals a lti-step sj eed search cuit termi re selectal t value), d irring unde e boost, s stop/star per/lower	Protec ectronic c tage becon re selecta peed oper a comman nal select ble (NO/N during ov- ervoltage lip compet t (50% of ' limit sett uency refi	acceleration ted by electric to the second s	ectronic c eration le or less. R LED is p ard/rever ac comman DWN con gency sto t output): letection, , reverse i D-step spe rated curr torque dei th built-ir	ircuit (fan vel is app UN lamp rovided fo se run (3- d, accel/d mand, ac p fault, en Fault, run minor en running, d ed operati ent, 0.5 se	lock dete rox. 250% stays ON or 400V) wire sequ lecel time cel/decel nergency nning, zer or, during luring spe ion (max. c, or less; equency j constants	cction) 6 of rated or digital ence), fat select, ex hold com stop alari o speed, s g basebloo ed seach,), restart <i>a</i> , frequen ump, acco copy (op	output ct operator lt reset, c ternal baa mand, LC n, self tes speed agre ck, operat data outp	urrent) LED stay external fa seblock DCAL/RE t eed, frequ ion mode ut throug entary po cee bias/g me switcl	ency dete , inverter h commu- wer loss, ain, fault	DC retry, ecel						
	Stall Preve Cooling Far Ground Fa Power Ch Indicati Standard Fu Standard Fu	Averheat Intion a Fault ault*5 arge on nction ut nction put nctions arge arge on nctions	Four of (NO/NC (NO/NC commu Followin (output ready, d Full-ran injection speed se prohibit	ON ur the follow 2 contact i 2 contact i 1 contact i 1 contact i 1 contact i 1 contact 1 contact	Protect til the DO ving input nput), mu nput), spontrol cir signals au \leq or \geq set t retry, du atic torqu current at uency up	eted by elected by elected by elected by elected by solution of the second seco	Protec ectronic c tage becon re selecta peed oper a comman nal select ble (NO/N during ov- ervoltage lip compet t (50% of ' limit sett uency refi	acceleration ted by eld ircuit (op mes 50V (Charge ble: Forwation, Jog dition, Jog d, UP/DO ion, emery d, UP/DO contact detection nsation, 5 inverter r ing, over erence wi and AL/	ectronic c eration le or less. R LED is p rard/rever comman DWN con gency sto t output), letection, , reverse i step spe- rated curre torque dei th built-ir ARM prov	ircuit (fan vel is app UN lamp rovided fr se run (3- d, accel/d mand, ac p fault, er Fault, run minor er running, d ed operati ent, 0.5 se rection, fr a volume, vided as s	lock dete rox. 2509 stays ON or 400V) wire sequ decel time decldecel nergency noring, zer ror, during luring spe ion (max. cc, or less) equency j constants tandard L	ection) 6 of rated or digital ence), fat select, ex hold com stop alarr o speed, s g basebloo ed seach,), restart a), frequen ump, acce a copy (op	output cu operator lt reset, e ternal bas mand, LC n, self tes speed agre ck, operat data outp fter mom cy referen el/decel ti tion), MB	urrent) LED stay external fa seblock DCAL/RE t sed, frequ ion mode ut throug mentary po ace bias/g me switcl EMOBUS	ency dete , inverter h commu- wer loss, ain, fault	DC retry, ecel						
	Stall Preve Cooling Far Ground Fa Power Ch Indicati Standard Fu Standard Fu	Averheat Intion a Fault ault*5 arge on nction ut nction out nctions cator LED perator	Four of (NO/NC (NO/NC commu Followin (output ready, d Full-ran injection speed se prohibit	ON ur the follow 2 contact i 2 contact i 1 contact i 1 contact i 1 contact i 1 contact 1 contact	Protect til the DO ving input nput), mu nput), spontrol cir signals au \leq or \geq set t retry, du atic torqu current at uency up	cted by elected by elected by elected by elected by solution of the second seco	Protec ectronic c tage becon re selecta peed operer n comman nal select ble (NO/N during ovver voltage lip compe t (50% of limit sett uency refi	acceleration ted by electric to the second s	ectronic c eration le or less. R LED is p rard/rever comman DWN con gency sto t output): letection, , reverse i step spe- rated curre torque dei th built-ir ARM prov- ncy refere	ircuit (fan vel is app UN lamp rovided fr se run (3- d, accel/d mand, ac p fault, er Fault, run minor er running, d ed operati ent, 0.5 se rection, fr a volume, vided as s	lock dete rox. 2509 stays ON or 400V) wire sequ decel time decldecel nergency noring, zer ror, during luring spe ion (max. cc, or less) equency j constants tandard L but freque	ection) 6 of rated or digital ence), fat select, ex hold com stop alarr o speed, s g basebloo ed seach,), restart a), frequen ump, acce a copy (op ED's ney, outp	output cu operator lt reset, c tternal bat mand, LC n, self tes speed agre ck, operat data outp fter mom cy referen el/decel ti tition), MH ut current	urrent) LED stay external fa seblock DCAL/RE t sed, frequ ion mode ut throug mentary po ace bias/g me switcl EMOBUS	ency dete , inverter h commu- wer loss, ain, fault	DC retry, ecel						
	Stall Preve Cooling Far Ground Fa Power Ch Indicati stall Preve Multi-fu Inp Standard Fu Standard Fu Standard Fu Digital O Termina Wiring Distance	Averheat ention Fault ault*5 arge on nction ut nction nctions ator LED perator als between	Four of (NO/NC (NO/NC commu Followin (output ready, d Full-ran injection speed se prohibit	ON ur the follow 2 contact i 2 contact i 1 contact i 1 contact i 1 contact i 1 contact 1 contact	Protect til the DO ving input nput), mu nput), spontrol cir signals au \leq or \geq set t retry, du atic torqu current at uency up	cted by elected by elected by elected by elected by solution of the second seco	Protec ectronic c tage becon re selecta peed operer n comman nal select ble (NO/N during ovv ervoltage lip compe t (50% of limit sett uency refe RUN e to monit	acceleration ted by electric to the second s	ectronic c eration le or less. R LED is p ard/rever comman DWN con DWN con DWN con DWN con Dency sto t output): letection, reverse r step spe- rated curr torque del th built-ir ARM prov- ncy refere als C	ircuit (fam vel is app UN lamp rovided for serun (3- d, accel/d mand, ac p fault, en Fault, en Fault, rum minor en running, d ed operatient, 0.5 se ection, fa volume, vided as s ence, outp ontrol circ	lock deterox. 2509 stays ON or 400V) wire sequecel time cel/decel mergency nning, zer or, during turing spe ion (max. cc, or less; constants tandard L tandard L ut freque; cuit: plug-	ection) 6 of rated or digital ence), fat select, ex hold com stop alarr o speed, s g basebloo ed seach,), restart a), frequen ump, acce a copy (op ED's ney, outp	output cu operator lt reset, c tternal bat mand, LC n, self tes speed agre ck, operat data outp fter mom cy referen el/decel ti tition), MH ut current	urrent) LED stay external fa seblock DCAL/RE t sed, frequ ion mode ut throug mentary po ace bias/g me switcl EMOBUS	ency dete , inverter h commu- wer loss, ain, fault	DC retry, ecel						
	Stall Preve Cooling Far Ground Fa Power Ch Indicati stall Preve Multi-fu Inp Standard Fu Standard Fu Standard Fu Digital O Termina Wiring Distance Inverter and	Averheat ention Fault ault*5 arge on nction ut nction nctions ator LED perator als between	Four of (NO/NC (NO/NC commu Followin (output ready, d Full-ran injection speed se prohibit	ON ur the follow 2 contact i 2 contact i 1 contact i 1 contact i 1 contact i 1 contact 1 contact	Protect til the DO ving input nput), mu nput), spontrol cir signals au \leq or \geq set t retry, du atic torqu current at uency up	cted by elected by elected by elected by elected by solution of the second seco	Protec ectronic c tage becon re selecta peed operer n comman nal select ble (NO/N during ovv ervoltage lip compe t (50% of limit sett uency refe RUN e to monit	acceleration ted by ele- ircuit (op- mes 50V (Charge ble: Forwation, Jogo d, UP/DC ion, emer- idC contace ertorque contace ertorque contace ertorque contace ertorque contace and AL/ or freque	ectronic c eration le or less. R LED is p ard/rever comman DWN con gency sto t output): letection, reverse r D-step spe ated curr, torque det th built-ir ARM pro- ncy references als C 100m (32)	ircuit (fam vel is app UN lamp rovided fi se run (3- d, accel/da mand, acc p fault, eru minor err unning, d ed operati- tection, fr a volume, vided as si ence, outp ontrol circ 3ft) or les	lock dete rox. 2509 stays ON or 400V) wire sequ locel time cel/decel nergency nning, zer or, during luring spe constants tandard L out freque s	ection) 6 of rated or digital ence), fat select, ex hold com stop alarr o speed, s g basebloo ed seach,), restart a), frequen ump, acce a copy (op ED's ney, outp	output cu operator lt reset, c tternal bat mand, LC n, self tes speed agre ck, operat data outp fter mom cy referen el/decel ti tition), MH ut current	urrent) LED stay external fa seblock DCAL/RE t sed, frequ ion mode ut throug mentary po ace bias/g me switcl EMOBUS	ency dete , inverter h commu- wer loss, ain, fault	DC retry, ecel						
Other Functions	Stall Preve Cooling Far Ground Fa Power Ch Indicati standard Inp Standard Fu Standard Fu Standard Fu Standard Fu Digital O Termina Wiring Distance Inverter and	Averheat ention Fault ault*5 arge on nction ut nction nctions ator LED perator als between Motor	Four of (NO/NC (NO/NC commu Followi (output ready, d Full-ran injection speed se prohibit (Option	ON ur the follow 2 contact i 2 contact i 1	Protect til the D0 ving input, mu nput), spontrol cirr signals au $\leq \sigma r \geq s$ t retry, du atic torqu current at uency up re accel/d	eted by ele C bus volt signals a liti-step sj eed search uit termi re selectal t value), d t value), d t value), d stop/star stop/star per/lower ecel, freq Available Main cit	Protec ectronic c tage becon re selecta peed oper a comman nal select: ble (NO/ ble (NO/ ble (NO/ vervoltage lip compet t (50% of limit sett uency refi RUN e to monit rcuit: scre	acceleration ted by ele- ircuit (op- mes 50V - (Charge ble: Forwation, Jone ation, Joga d, UP/DO ion, emer. IC contace ertorque of detection nsation, S inverter 1 inverter 1 in	cetronic c eration le or less. R LED is p ard/rever comman DWN con gency sto t output): letection, reverse r letection, reverse r letection, reverse c atad curre th built-ir ARM prov ncy refer als C 100m (32: Open chas	ircuit (fam vel is app UN lamp rovided for se run (3- da, accel/da mand, acc p fault, eru minor err unning, d ed operat ed operat ent, 0.5 se section, fr a volume, vided as se ence, outp ontrol circ 3ft) or les ssis (IP20	lock deterox. 2509 stays ON or 400V) wire sequ locel time cel/decel nergency nning, zer or, during turing spe ion (max. c, or less; equency j constants tandard L out freque: s)	cction) 6 of rated or digital ence), fat select, ex- hold com- stop alarr o speed, s j baseblook g baseblook g baseblook , frequenn ump, accu- c copy (op- ED's ncy, outpu- in screw	output cu output cu operator ilt reset, e ternal bass mand, LC n, self tes speed agre ck, operat data outp after mom cy referet el/decel ti tition), ME ut current terminal	urrent) LED stay seblock DCAL/RE t ed, frequ ion mode uut throug mentary po mes switcl EMOBUS	ult EMOTE se , inverter h commun wer loss, ain, fault n, accel/dc	ction run nicatio DC retry, ecel ication						
Other Functions	Stall Preve Cooling Far Ground Fa Power Ch Indicati Book Standard Fu Standard Fu Standard Fu Standard Fu Standard Fu Digital O Termina Wiring Distance Inverter and Enclosure Cooling Metho	Averheat ention antion Fault ault*5 arge on nction ut nction nctions ator LED perator als between Motor	Four of (NO/NC (NO/NC commu Followi (output ready, d Full-ran injection speed se prohibit (Option	ON ur the follow 2 contact i 2 contact i 1 contact i 1 contact i 1 contact i 1 contact 1 contact	Protect til the D0 ving input, mu nput), spontrol cirr signals au $\leq \sigma r \geq s$ t retry, du atic torqu current at uency up re accel/d	eted by ele C bus volt signals a liti-step sj eed search uit termi re selectal t value), d t value), d e boost, s stop/star per/lower ecel, freq Available Main cit	Protec ectronic c tage becon re selecta peed oper a comman nal select: ble (NO/ ble (NO/ ble (NO/ vervoltage lip compet t (50% of limit sett uency refi RUN e to monit rcuit: scre	acceleration ted by ele- ircuit (op- mes 50V - (Charge ble: Forwation, Jogo d, UP/DO ion, emer. IC contace ertorque of detection inverter 1 inverter 1 inv	ectronic c eration le or less. R LED is p ard/rever comman DWN con gency sto t output): letection, reverse i letection, reverse i letection, reverse i letection, reverse i letection, reverse i letection, rov refer als C 100m (32: Open chas 3-/single-j	ircuit (fam vel is app UN lamp rovided for se run (3- da, accel/da mand, acc p fault, eru minor eru unning, c ed operati- ed operati- ent, 0.5 se section, fr a volume, vided as si ence, outp ontrol circo Sft) or les ssiss (IP20 ohase), 40	lock deterox. 2509 stays ON or 400V) wire sequ lecel time cel/decel nergency nning, zer or, during turing spe ion (max. c, or less; equency j constants tandard L but freque: cui: plug- s) 00V, 1.5k	cction) 6 of rated or digital ence), fat select, ex- hold com- stop alarr o speed, s j baseblook g baseblook g baseblook , frequenn ump, accu- c copy (op- ED's ncy, outpu- in screw	output cu output cu operator ilt reset, e ternal bass mand, LC n, self tes speed agre ck, operat data outp after mom cy referet el/decel ti tition), ME ut current terminal	urrent) LED stay seblock DCAL/RE t ed, frequ ion mode uut throug mentary po mes switcl EMOBUS	ult EMOTE se , inverter h commun wer loss, ain, fault n, accel/dc	ction run nicatio DC retry, ecel ication						
Other Functions	Stall Preve Cooling Far Ground Far Power Ch Indicati Standard Fu Standard Fu Standard Fu Standard Fu Digital O Termina Wiring Distance Inverter and Enclosure Cooling Metho	Averheat Intion a Fault ault*5 arge on nction ut nction perator als between Motor bod ty	Four of (NO/NC (NO/NC commu Followi (output ready, d Full-ran injection speed se prohibit (Option	ON ur the follow 2 contact i 2 contact i 1	Protect til the D0 ving input, mu nput), spontrol cirr signals au $\leq \sigma r \geq s$ t retry, du atic torqu current at uency up re accel/d	cted by elected by elected by elected by solution of the signals a liti-step speed search cuit termine the selectal transmission of the selectal transmission of the selectal transmission of the selectal set of the set of the selectal set of the set o	Protec ectronic c tage becon re selecta peed oper- n comman nal select ble (NO/N during ov- ervoltage lip compet t (50% of limit sett uency refi RUN e to monit rcuit: scre	acceleration ted by electric to the second s	ectronic c eration le or less. R LED is p ard/rever comman DWN con gency sto t output): letection, , reverse i step spe- rated curre torque det th built-ir step spe- rated curre step spe- step spe- ste	ircuit (fan vel is app UN lamp rovided fr se run (3- d, accel/d mand, ac p fault, er Fault, run minor er running, d ed operati ent, 0.5 se tection, fr a volume, vided as s ence, outp ontrol circ Sft) or les ssis (IP20 obase), 40 non-cond	lock deter rox. 2509 stays ON or 400V) wire sequ lock decel time cel/decel nergency nor, during luring spe ion (max. sc, or less equency j constants tandard L out freque s)) 00V, 1.5kt lensing)	cction) 6 of rated or digital ence), fat select, ex- hold com- stop alari o speed, s- g basebloo ed seach,), restart a), frequen ump, acc- c copy (op- ED's ncy, outpi- in screw W (2HP)(output cu operator lt reset, e ternal bas mand, LC n, self tes speed agre ck, operat data outp after mom cy referen el/decel ti tition), MI ut current terminal 3-phase),	urrent) LED stay seblock DCAL/RE t ed, frequ ion mode uut throug mentary po mes switcl EMOBUS	ult EMOTE se , inverter h commun wer loss, ain, fault n, accel/dc	oction run nicatio DC retry, ecel ication						
Other Functions	Stall Preve Cooling Far Ground Far Power Ch Indicati Standard Fu Out Standard Fu Standard Fu Digital O Termina Wiring Distance Inverter and Enclosure Cooling Method	Averheat Intion ault*5 arge on nction ut nction out nctions ator LED perator als between Motor ty erature*4	Four of (NO/NC (NO/NC commu Followi (output ready, d Full-ran injection speed se prohibit (Option	ON ur the follow 2 contact i 2 contact i 1	Protect til the D0 ving input, mu nput), spontrol cirr signals au $\leq \sigma r \geq s$ t retry, du atic torqu current at uency up re accel/d	cted by elected by elected by elected by solution of the signals a liti-step speed search cuit termine the selectal transmission of the selectal transmission of the selectal transmission of the selectal set of the set of the selectal set of the set o	Protec ectronic c tage becon re selecta peed oper n comman nal select ble (NO/N during ovver voltage lip compe t (50% of limit sett uency refi RUN e to monit rcuit: scree V, 0.75kV	acceleration ted by eld ircuit (op mes 50V (Charge ble: Forw lation, Jog d, UP/DO ion, emery d, UP/DO ion, emery d, UC contact ertorque c detection fand AL/ or freque w termine f ov (1HP)(2 90% RI o 140°F)	ectronic c eration le or less. R LED is p rard/rever comman DWN con gency sto t output): letection, , reverse i 	ircuit (fan vel is app UN lamp rovided fr se run (3- d, accel/d mand, ac p fault, er Fault, run minor er running, d ed operati ent, 0.5 se rection, fr a volume, vided as s ence, outp ontrol circ siss (IP20 bhase), 40 non-cond ture durin	I lock deter rox. 2509 stays ON or 400V) wire sequ lock decel time cel/decel nergency nor, during luring spe ion (max. cc, or less) equency j constants tandard L out frequency s) OV, 1.5k ¹ lensing) ag shippin	cction) 6 of rated or digital ence), fat select, ex hold com stop alarr o speed, s g basebloo ed seach,), restart a), frequen ump, acce c copy (op ED's ney, outpr in screw W (2HP)(g for short	output cu operator lt reset, e ternal bas mand, LC n, self tes speed agre ck, operat data outp after mom cy referen el/decel ti tition), MI ut current terminal 3-phase),	urrent) LED stay seblock DCAL/RE t ed, frequ ion mode uut throug mentary po mes switcl EMOBUS	ult EMOTE se , inverter h commun wer loss, ain, fault n, accel/dc	oction run nicatio DC retry, ecel ication						
Other Functions	Stall Preve Cooling Far Ground Far Power Ch Indicati Standard Fu Standard Fu Standard Fu Standard Fu Digital O Termina Wiring Distance Inverter and Enclosure Cooling Metho	Averheat intion ault*5 arge on nction ut nctions cator LED perator als between Motor yerature*4 perature	Four of (NO/NC (NO/NC commu Followi (output ready, d Full-ran injection speed se prohibit (Option	ON ur the follow 2 contact i 2 contact i 1	Protect til the D0 ving input, mu nput), spontrol cirr signals au $\leq \sigma r \geq s$ t retry, du atic torqu current at uency up re accel/d	cted by elected by elected by elected by solution of the signals a liti-step speed search cuit termine the selectal transmission of the selectal transmission of the selectal transmission of the selectal set of the set of the selectal set of the set o	Protec ectronic c tage becon re selecta peed oper n comman nal select ble (NO/N during ovver voltage lip compe t (50% of limit sett uency refi RUN e to monit rcuit: scree V, 0.75kV	acceleration ted by eld ircuit (op mes 50V (Charge ble: Forw ation, Joget du UP/DO ion, emery CC contact ertorque of detection and AL/ or freque w termina (V (1HP)(2 90% RI o 140°F)) to +50°C	ectronic c eration le or less. R LED is p rard/rever comman DWN con gency sto t output): letection, , reverse 1 	ircuit (fan vel is app UN lamp rovided fr se run (3- d, accel/d mand, ac p fault, er Fault, run minor er running, d ed operati ent, 0.5 se tection, fr a volume, vided as s ence, outp ontrol circ Sft) or les ssis (IP20 obase), 40 non-cond	lock deter rox. 2509 stays ON or 400V) wire sequ eccl time cel/decel mergency ming, zer or, during luring spe ion (max. cc, or less; equency j constants tandard L but frequency s) 00V, 1.5k ² lensing) ag shippin on-freezin	cction) 6 of rated or digital ence), fat select, ex hold com stop alarr o speed, s g basebloo ed seach,), restart a), frequen ump, acce c copy (op ED's ney, outpr in screw W (2HP)(g for short	output cu operator lt reset, e ternal bas mand, LC n, self tes speed agre ck, operat data outp after mom cy referen el/decel ti tition), MI ut current terminal 3-phase),	urrent) LED stay seblock DCAL/RE t ed, frequ ion mode uut throug mentary po mes switcl EMOBUS	ult EMOTE se , inverter h commun wer loss, ain, fault n, accel/dc	ction run nicatio DC retry, ecel ication						

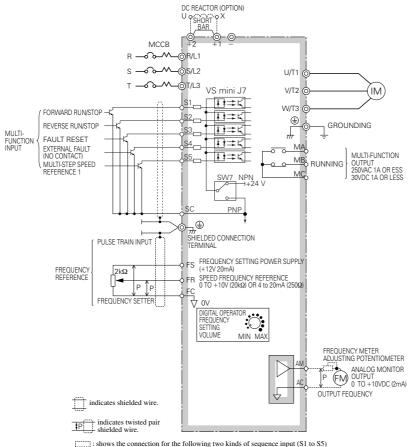
*1 Single-phase series inverter output is three-phase (for three-phase motors).
*2 Based on a standard 4-pole motor for max. applicable motor output. Select the inverter model whose rated current is larger than motor rated current.
*3 Rated input current depends on the power-source impedance including the power transformer, the input reactor, and wires.
*4 Shows deceleration torque for uncoupled motor decelerating from 60Hz with the shortest possible deceleration time.
*5 The ground fault may not be detected in the following cases.
A ground fault with low resistance which occurs in motor cables or terminals.
A ground fault occurs when the power is turned ON.



Voltage	Composity	Ein		Dim	ensions ir	n mm (in	ches)		Mass		Heat Loss W	
Class	Capacity kW (HP)	Fig. No.	W	Н	D	W1	H1	H2	kg (lb)	Fin	Inside Unit	Total Heat Loss
	0.1 (0.13)		68	128	70	56	118	5	0.5 (1.1)	3.7	9.3	13.0
	0.2 (0.25)	1	(2.68)	(5.04)	(2.76)	(2.20)	(4.65)	(0.20)	0.5 (1.1)	7.7	10.3	18.0
200V	0.4 (0.5)	1	68	128	102 (4.16)	56	118	5	0.8 (1.76)	15.8	12.3	28.1
Three-phase	0.75 (1)		(2.68)	(5.04)	122 (4.80)	(2.20)	(4.65)	(0.20)	0.9 (1.98)	28.4	16.7	45.1
Three-phase	1.5 (2)		108	128	129 (5.08)	96	118	5	1.3 (2.83)	53.7	19.1	72.8
	2.2 (3)	2	(4.25)	(5.04)	154 (6.06)	(3.78)	(4.65)	(0.20)	1.5 (3.31)	60.4	34.4	94.8
	3.7 (5)		140(5.51)	128(5.04)	161(6.34)	128(5.04)	118(4.65)	5 (0.20)	2.1(4.63)	96.7	52.4	149.1
	0.1 (0.13)		68	128	70	56	118	5	0.5 (1.1)	3.7	10.4	14.1
200V	0.2 (0.25)	1	(2.68)	(5.04)	(2.76)	(2.20)	(4.65)	(0.20)	· · ·	7.7	12.3	20.1
	0.4 (0.5)		(2.08)	(3.04)	112 (4.41)	(2.20)	(4.05)	(0.20)	0.9 (1.98)	15.8	16.1	31.9
Single-phase	0.75 (1)	2	108	128	129 (5.08)	96	118	5	1.5 (3.31)	28.4	23.0	51.4
	1.5 (2)	2	(4.25)	(5.04)	154 (6.06)	(3.78)	(4.65)	(0.20)	1.5 (5.51)	53.7	29.1	82.8
	0.37 (0.5)				81 (3.19)				1.0 (2.20)	9.4	13.7	23.1
	0.55 (0.75)		108	128	99 (3.90)	96	110	~	1.1 (2.43)	15.1	15.0	30.1
400V	1.1 (1.5)		(4.25)	(5.04)	129 (5.08)	(3.78)	118	5		30.3	24.6	54.9
Three-phase	1.5 (2)	2	(4.23)	(3.04)	154	(5.78)	(4.65)	(0.20)	1.5 (3.31)	45.8	29.9	75.7
rinee-phase	2.2 (3)				(6.06)					50.5	32.5	83.0
	3.0 (4)		140	128	161	128	118	5	21(462)	58.2	37.6	95.8
	3.7 (5)		(5.51)	(5.04)	(6.34)	(5.04)	(4.65)	(0.20)	2.1 (4.63)	73.4	44.5	117.9

Model Designation

Capacity Code Designation


		2	20	F	ר י	C
No.	Phase / Voltage	Т				- –
В	Single-phase 200VAC					I
2	Three-phase 200VAC					I
4	Three-phase 400VAC					
No.	Applicable maximum motor output					
0P1	0.1kW (0.13HP)					
0P2	0.2kW (0.25HP)					
0P4	0.4kW (0.5HP)					
0P7	0.75kW (1HP)					
1P5	1.5kW (2HP)					
2P2	2.2kW (3HP)					
3P0	3.0kW (4HP)					
3P7	3.7kW (5HP)					
No.	Protective structure					
0	Open chassis (IP20)					

Models

V - 14				Capacity	code to b	e filled in	model	[] (Max.	applicable	motor ou	tput kW)
Voltage class	De	escription	Model	0P1 (0.1)	0P2 (0.2)	0P4 (0.4)	0P7 (0.7)	1P5 (1.5)	2P2 (2.2)	3P0 (3.0)	3P7 (3.7)
	NV-1 D1 1-1	XX7'-1 A 1 X7 1		(0.1)	(0.2)	(0.4)	(0.7)	(1.5)	(2.2)	(3.0)	(3.7)
Single-phase	With Digital	With Analog Volume	CIMR-J7A B	0	\cap	\cap	\cap	\cap			
200V	Operator	Without Analog Volume	CIMR-J7C B		0		0	0			_
200 v	Without	Digital Operator	CIMR-J7B B	0	0	0	0	0			
T1	With Digital	With Analog Volume	CIMR-J7A 2	0	0	0	0	0	0		
Three-phase 200V	Operator	Without Analog Volume	CIMR-J7C 2	0	0	0	0	0	0		0
200 v	Without	Digital Operator	CIMR-J7B 2	0	0	0	0	0	0		0
T1	With Digital	With Analog Volume	CIMR-J7A 4		0	0		\circ	0	0	0
Three-phase 400V	Operator	Without Analog Volume	CIMR-J7C 4		0	0	0	0		0	0
4001	Without	Digital Operator	CIMR-J7B 4	—	0	0	0	0	0	0	0

Note: Models without cooling fin are available. Contact your YASKAWA representative. \bigcirc : provided

STANDARD WIRING

:: shows the connection for the following two kinds of sequence input (S1 to S5) siglals: no-voltage contact and NPN transistors (0V common). For a PNP transistor (+24V common), a 24V external power supply is necessary.

Model Description

Ту	ре	Term	ninal	Name	Function (Signal Level)	
	Ĩ	R/L1, S/I	L2, T/L3	AC Power Supply Input	Main circuit power supply input (Use R/L1 and S/L2 for single inverter. Do not use T/L3 of the models less than 0.75kW for c such as a junction terminal.)	
Moio Cironit		U/T1, V/T	Г2, W/T3	Inverter Output	For inverter output	
	lalli	+2, +1		DC Reactor Connection	Remove the short bar between +2 and +1 when connecting DC	reactor (option)
-	2	+1, -		DC Power Supply Input	For power supply input (+1: positive electrode; - : negative electrode;	ectrode)*
				Grounding	For grounding (Grounding should be conforming to the local g	rounding code.)
			S1	Forward Run Input	Runs when CLOSED, stops when OPEN.	
		a	S2	Multi-function Input Selection 2	Factory setting: Runs when CLOSED, stops when OPEN.	
		Sequence	S3	Multi-function Input Selection 3	Factory setting: "Fault reset"	24VDC, 8mA
		Sequ	S4	Multi-function Input Selection 4	Factory setting: "External fault (NO contact)"	photocoupler insulation
	Input		S 5	Multi-function Input Selection 5	Factory setting: "Multi-step speed reference 1"	
÷,		-	SC	Multi-function Input Selection Common	Common for control signal	
Control Circuit		ice Ice	FS	Power Supply Terminal for Frequency Setting	+12V (allowable current: 20mA max.)	
ntrol		Frequency Reference	FR	Speed Frequency Reference	0 to +10V DC (20kΩ) or 4 to 20mA (250Ω), 0 to 20mA (250Ω)	2) (resolution 1/1000)
ပိ		Fre	FC	Frequency Reference Common	0V	
		ction t	MA	NO Contact Output		Contact capacity
		Multi-function Contact Output	MB	NO Contact Output	Factory setting: "Running"	250VAC, 1A or less
	Output	Mult	МС	Contact Output Common		30VDC, 1A or less
	0	A	N	Analog Monitor Output	Factory setting: "Output frequency" 0 to +10V output	0 to 10V 2mA or less
		A	C	Analog Monitor Common	0V	Resolution: 8bits

*DC power supply input terminal is not conformed to CE and UL/cUL standards.

CONSTANTS LIST

Function	Constant No.	Function Name	Description	Setting Range	Min. Setting Unit	Initial	Ref. Page
Selecting Constant Group Initializing	01	Password	 0: n01 read and set, n02 to n79 read only (FREF of digital operator can be set) 1: n01 to n79 read and set 6: Fault history clear 8: Initialization-reset (multi-function terminal to initial setting) 9: 3-wire initialization-reset 	0, 1, 6, 8, 9	1	1	17
	02	Run command selection	0 : Digital operator 1 : Control circuit terminal 2 : Communication	0 to 2	1	0	
Selecting Operation Mode	03	Frequency reference selection	0 : Volume 1 : Frequency Reference 1 (n21) 2 : Control circuit terminal (0 to 10 V) 3 : Control circuit terminal (4 to 20 mA) 4 : Control circuit terminal (0 to 20 mA) 6 : Communication	0 to 4.6	1	0*1	17
Selecting Stopping Method	04	Selecting Stopping Method	0 : Deceleration to stop 1 : Coast to a stop	0, 1	1	0	23
Reverse Run Prohibited	05	Selecting reverse run prohibited	0 : reverse run enabled 1 : reverse run disabled	0, 1	1	0	17
	06	Stop key function	0 : Stop key is always effective 1 : Stop key is effective when operated from digital operator	0,1	1	0	23
Selecting Digital	07	Selecting frequency reference in local mode	0 : Volume 1 : Frequency reference 1 (n21)	0, 1	1	0*1	_
Operator Key Function	08	Frequency reference setting method from digital operator	0 : Enter key used 1 : Enter key not used	0, 1		0	_
	09	Max. output frequency	V	50.0 to 400Hz	0.1Hz (less than 100Hz) 1Hz (100Hz or more)	60.0Hz	16
	10	Max. voltage	n10	0.1 to 255V*2	1V	200V*2	25
Setting V/f Pattern	11	Max. voltage output frequency (base frequency)	n13	0.2 to 400Hz	0.1Hz (less than 100Hz)	60.0Hz	
	12	Mid. output frequency	n15 F	0.1 to 399Hz	1Hz (100Hz or more)	1.5Hz	
	13	Mid. output frequency voltage	0 n14 n12 n11 n09	0.1 to 255V*2	1V	12V*2	25
	14	Min. output frequency	When V/f pattern is a straight line, set n12 and n14 to the same value. In this case, n13 is disregarded.	0.1 to 10Hz	0.1Hz	1.5Hz	
	15	Min. output frequency voltage		0.1 to 50V*2	1V	12V*2	

*1 The factory setting of inverters with operator without volume (JVOP-146) is "1". When initialized, turn to "0".

*2 For 400V class inverter, the upper limit of voltage setting range and the setting value before shipment are twice that of (=400/200) 200V class.

CONSTANTS LIST (Cont'd)

Function	Constant No.	Function Name	Description	Setting Range	Min. Setting Unit	Initial	Ref. Page
	16*	Acceleration time 1	Sets acceleration time in the unit when frequency reference changes from 0 to 100 %.	0.0 to 999	0.1s	10.0s	
Selecting Acceleration/	17*	Deceleration time 1	Sets deceleration time in the unit when frequency reference changes from 100 to 0 $\%$.	0.0 to 999	(less than 100s)	10.0s	16
Deceleration Time	18*	Acceleration time 2	Effective when acceleration time 2 is selected at multi-function contact input selection. Setting is the same as n16.	0.0 to 999	1s (100s or	10.0s	19
	19*	Deceleration time 2	Effective when deceleration time 2 is selected at multi-function contact input selection. Setting is the same as n17.	0.0 to 999	more)	10.0s	
Selecting S-curve	20*	S-curve selection	0 : S-curve not provided 1 : 0.2 s 2 : 0.5 s 3 : 1.0 s	0 to 3	1	0	20
	21*	Frequency reference 1 (Master speed frequency reference)	Sets master speed frequency reference. Setting is the same as simple operation lamp [FREF]).			6.0Hz	
	22*	Frequency reference 2	Sets second frequency reference. It is effective when multi-step speed reference 1 is selected in multi-function contact input.				
	23*	Frequency reference 3	Sets third frequency reference. It is effective when multi-step speed reference 2 is selected in multi-function contact input.		0.1 Hz		
Frequency	24*	Frequency reference 4	Sets fourth frequency reference. It is effective when multi-step speed references 1 and 2 are selected in multi-function contact input.	0.0 to	(less than 100Hz)		18
Reference (FREF)	25*	Frequency reference 5	Sets fifth frequency reference. It is effective when multi-step speed reference 3 is selected in multi-function contact input.	400Hz	1 Hz	0.0Hz	
	26*	Frequency reference 6	Sets sixth frequency reference. It is effective when multi-step speed references 1 and 3 are selected in multi-function contact input.		(100 Hz or more)		
	27*	Frequency reference 7	Sets seventh frequency reference. It is effective when multi-step speed references 2 and 3 are selected in multi-function contact input.				
	28*	Frequency reference 8	Sets eighth frequency reference. It is effective when multi-step speed references 1, 2, and 3 are selected in multi-function contact input.				
	29*	Jog frequency	Sets jog frequency. It is effective when jog frequency is selected in multi-function contact input.			6.0Hz	18 19
Frequency	30	Frequency reference upper limit	Sets upper limit of frequency reference in units of 1 %. Max. output frequency (n09) is 100 %.	0 to 110%	1%	100%	10
Reference Limit	31	Frequency reference lower limit	Sets lower limit of frequency reference in units of 1 %. Max. output frequency (n09) is 100 %.	0 to 110%	1%	0%	19
	32	Motor rated current	Sets motor rated current of the motor nameplate. It is the standard current for motor electro-thermal protection.	0 to 120 % of inverter rated output current	0.1A	Different according to inverter capacity (kVA)	17 27
Motor Protection by Electronic Thermal	33	Electronic thermal motor protection selection	0 : Standard motor 1 : Inverter motor 2 : No protection	0 to 2	1	0	27
	34	Electronic thermal motor protection time constant setting	Sets constant for motor protection. For standard and inverter motors (standard rating), 8min., for others (short period rating), 5min.	1 to 60min	1min	8min	21
Selecting Cooling Fan Operation	35	Selecting cooling fan operation	0 : ON/OFF control (ON while running, OFF when stopped. ON for one minute after stopping.)1 : Operates with power supply ON	0.1	1	0	-

* Can be changed during operation.

Function	Constant No.	Function Name	Description	Setting Range	Min. Setting Unit	Initial	Ref. Page
Selecting Sequence Input Functions	36	Multi-function input selection 2 (Terminal S2)	 2: REV run command (2-wire sequence) 3: External fault (NO contact input) 4: External fault (NC contact input) 5: Fault reset 6: Multi-step speed reference 1 7: Multi-step speed reference 2 8: Multi-step speed reference 3 10: Jog reference 11: Accel/Decel time selection 12: External baseblock (NO contact input) 13: External baseblock (NC contact input) 14: Search command from maximum. output frequency 15: Search command from set frequency 16: Accel/Decel prohibit 17: Local/Remote selection 18: Comm./Control circuit terminal selection 19: Emergency stop fault (NO contact input) 20: Emergency stop fault (NC contact input) 21: Emergency stop alarm (NC contact input) 22: Emergency stop alarm (NC contact input) 	2 to 8 10 to 22	1	2	18 19 21 22 23
	37	Multi-function input selection 3 (Terminal S3)	0 : FWD/REV run command (3-wire sequence) Other set items are same as n36	0.2 to 8, 10 to 22	1	5	
	38	Multi-function input selection 4 (Terminal S4)	Set items are same as n36	2 to 8 10 to 22	1	3	
	39	Multi-function input selection 5 (Terminal S5)	Set items are same as n36. 34 : UP/DOWN command (Terminal S4 is UP command/DOWN command and the setting of n38 is invalid) 35 : Loop test (MEMOBUS)	2 to 8 10 to 22 34, 35	1	6	-
Selecting Sequence Output Functions	40	Multi-function output selection 1 (Contact output terminal MA-MB-MC)	 0 : Fault 1 : Running 2 : Speed agreed 3 : Zero speed 4 : Frequency detection 1 (Output frequency ≥ Custom frequency detection) 5 : Frequency detection 2 (Output frequency ≤ Custom frequency detection) 6 : Overtorque detection (NO contact output) 7 : Overtorque detection (NC contact output) 10 : Minor fault (alarm displays) 11 : During baselock 12 : Operation mode 13 : Inverter operation ready 14 : During fault retry 15 : Low voltage detecting 16 : In REV running 17 : Speed searching 18 : Output from communication 	0 to 7 10 to 18	1	1	25
	41*	Analog frequency reference gain	Sets internal reference level in units of 1 % when frequency reference voltage (current) is 10V (20mA). Max. output frequency (n09) is 100 %.	0 to 225%	1%	100%	19
Selecting Frequency Reference	42*	Analog frequency reference bias	Sets internal reference level in units of 1 % when frequency reference voltage (current) is 0V (4mA or 0mA). Max. output frequency (n09) is 100 %.	-99 to 99%	1%	0%	19
Functions	43	Filter time constant for analog frequency reference constant	Sets filter time constant for analog input primary lag. (to avoid noise)	0.00 to 2.00s	0.01s	0.10s	_
Selecting Analog	44	Multi-function analog output (terminal AM-AC)	0 : Output frequency (10V/Max. frequency n09) 1 : Output current (10V/Inverter rated current)	0, 1	_	0	22
Monitor Functions	45*	Analog monitor gain	Adjusts output voltage level of analog monitor. (ex.) when 3V is 100 % level, sets as $n45 = 0.30$	0.00 to 2.00	0.01	1.00	22

* Can be changed during operation.

Function	Constant No.	Function Name	Description	Setting Range	Min. Setting Unit	Initial	Ref. Page
Adjusting Carrier Frequency	46	Carrier frequency selection	Carrier frequency 1, 2, 3, 4 : Set value ×2.5 Hz 7, 8, 9 : Proportional to output frequency of 2.5 kHz max. (lower limit 1 kHz)	1 to 4 7 to 9	1	4 (Different according to inverter capacity (kVA))	22
Momentary Power Loss Ridethrough	47	Momentary power loss ridethrough method	 0: Not provided 1: Continuous operation after power recovery within the power loss ridethrough time. 2: Continuous operation after power recovery (no fault output of UV1) 	0 to 2	1	0	20
Fault Retry	48	Automatic retry attempts	Sets automatic retry times after self-diagnosis when an inverter fault occurs.	0 to 10	1	0	20
	49	Jump frequency 1	Sets frequency to jump. Disabled when setting value is 0.0.	0.0 to	0.1 Hz (less than 100 Hz)		
Jump Frequency Control	50	Jump frequency 2	bets nequency to jump. Distance when setting value is o.o.	400Hz	1 Hz (100 Hz or more)	0.0Hz	21
	51	Jump frequency range	Sets the frequency range to jump. Disabled when setting value is 0.00.	0.0 to 25.5Hz	0.01Hz		
	52	DC injection braking current	Sets current value at DC injection braking. Inverter rated current is 100 %.	0 to 100%	1%	50%	21 23
DC Injection Braking	53	DC injection braking time at stop	Sets DC injection braking time at ramp to stop in units of 0.1 sec. Disabled at stop when the setting value is 0.0.	0.0 to 25.5s	0.1s	0.5s	23
	54	DC injection braking time at start	Sets DC injection braking time at start in units of 0.1 sec. Disabled at start when the setting value is 0.0.	0.0 to 25.5s	0.1s	0.0s	21
	55	Stall prevention during deceleration	0 : Enabled 1 : Disabled	0, 1	1	0	
Stall Prevention	56	Stall prevention level during acceleration	Sets stall prevention level in units of 1 % during acceleration. Inverter rated current is 100 % (Notes: • Disabled with setting of 200 %. • In constant output area, prevention level is automatically lowered.)	30 to 200%	1%	170%	26
	57	Stall prevention level during running	Sets stall prevention level in units of 1 % during running. Inverter rated current is 100 %. (Note : Disabled with setting of 200 %)	30 to 200%	1%	160%	
Frequency Detection	58	Frequency detection (multi- function contact output)	Sets frequency to detect when selected frequency detection at multi-function contact output .	0.0 to 400Hz	0.1 Hz (less than 100 Hz) 1 Hz (100 Hz or more)	0.0Hz	21
Detecting Overtorque	59	Overtorque detecting function selection	 0 : Detection disabled 1 : Detected during constant-speed running, and operation continues during and after detection. 2 : Detected during constant-speed running, and inverter output is shut OFF after detection. 3 : Detected during running, and operation continues during and after detection. 4 : Detected during running, and inverter output is shut OFF after detection. 	0 to 4	1	0	20
Detecting	60	Overtorque detection level	Sets overtorque detection level when detecting at multi- function contact output and multi-function photocoupler output. • Inverter rated current is 100% when detecting by current. • Motor rated torque is 100% when detecting by torque.	30 to 200%	1%	160%	20
Overtorque	61	Overtorque detection time	Sets overtorque detection time. Overtorque is detected when the set time or the overtorque detection level setting is exceeded.	0.1 to 10.0s	0.1s	0.1s	~

Function	Constant No.	Function Name	Description	Setting Range	Min. Setting Unit	Initial	Ref. Page
Holding Output Frequency	62	Hold output frequecy saving selection	 Selects whether or not to save the frequency when holding at UP/DOWN command from multi-function input terminal. 0: Output frequency is not saved while holding 1: When holding more than 5 sec, saves output frequency at holding and operates at this frequency when restarted. 	0, 1	1	0	_
Torque Compensation	63*1	Torque compensation gain	Sets torque compensation gain in units of 0.1. Normally, no adjustment necessary.	0.0 to 2.5	0.1	1.0	25
	64*1	Motor rated slip	Sets motor rated slip in units of 0.1 Hz.	0.0 to 20.0Hz	0.1Hz	(Different according to inverter capacity (kVA)/	_
Slip	65	Motor no-load current	Sets motor no-load current proportional to the motor rated current.	0 to 99%	1%	Different according to inverter capacity (kVA)/	27
Compensation Function	66*1	Slip compensation gain	For motor slipping calculated from the output current, sets gain to correct output frequency in units of 0.1.	0.0 to 2.5	0.1	0.0	27
	67	Slip compensation time constant	Adjusts for unstable speed and slow speed response.	0.0 to 25.5s	0.1s	2.0s	_
	68	MEMOBUS time over detection	 0 : Time over detection is enabled. (Coast to a stop) 1 : Time over detection is enabled. (Ramp to stop-Decel. 1) 2 : Time over detection is enabled. (Ramp to stop-Decel. 2) 3 : Time over detection is enabled. (Continue operation - alarm) 4 : Time over detection is disabled. 	0 to 4	1	0	_
	69	MEMOBUS frequency reference and frequency monitor unit	0 : 0.1 Hz 1 : 0.01 Hz 2 : 30000/100% (30000=MAX. output frequency) 3 : 0.1 %	0 to 3	1	0	_
MEMOBUS Communica- tion	70	MEMOBUS slave address	Allocates inverter MEMOBUS communication slave address between 0 to 32. Note: When set "0," ignores command from master and does not respond.	0 to 32	1	0	_
(when option unit is provided)	71	MEMOBUS BPS selection	0 : 2400 bps 1 : 4800 bps 2 : 9600 bps 3 : 19200 bps	0 to 3	1	2	_
	72	MEMOBUS parity selection	0 : Even parity 1 : Odd parity 2 : No parity	0 to 2	1	0	_
	73	Transmission waiting time		0 to 65ms	1ms	10ms	_
	74	RTS Control	0 : Enabled 1 : Disabled (RS-422: at 1 to 1 communication)	0, 1	1	0	_
Carrier Frequency Selection* ²	75	Reducing carrier frequency selection at low speed	0 : Invalid 1 : Valid	0, 1	1	0	_
Control Copy	76	Constant copy function selection	rdy : READY vFy : VERIFY rEd : READ vA : Inverter capacity display Cpy : COPY Sno : software No. display	rdy, rEd cPy, uFu vA, Sno	_	rdy	_
Function ^{*2}	77	Constant Read selection prohibit	0 : READ prohibited 1 : READ allowed	0.1	1	0	_
Fault History	78	Fault history	Displays newest one fault (only for monitoring)	_	_	_	_
Software Version	79	Software Version No.	Displays lowest 3 digits of software No. (only for monitoring)	-	_	-	_

*1 Can be changed during operation.

*2 Not built in for the software virsion VSP020010.

PROGRAMMING FEATURES

Programming features of VS mini J7 are explained according to the following items.

Item

Setting Function Ref. Page Accel • Accel/decel time setting 16 Decel • V/f pattern setting 16 Accel • Motor rotation direction setting 17 Accel

Items Should	Motor rotation direction setting	17
be Verified	• LOCAL (operator) /REMOTE	17
Before	(control circuit terminal) selection	
Operation	Motor rated current setting	17
	Operation mode selection	17
	• Constant set-up	17
	• Reverse run prohibit	18
	Multi-step speed selection	18
	Adjusting frequency setting signal	19
	• Operation at low speed	19
	Adjusting frequency upper and	19
	lower limits	
	Using two accel/decel times	19
	Automatic restart after momentary	20
Setting	power loss	
Operating	Soft-start characteristics	20
Condition	Torque detection	20
	Continuing operation by automatic	20
	fault reset	
	Frequency detection	21
	Avoiding resonance	21
	• Operating coasting motor without trip	21
	• Holding accel/decel temporarily	22
	• Using frequency meter or ammeter	22
	Reducing motor noise or leakage current	22
Selecting	Operator stop key selection	23
Stopping	Selecting stopping method	23
Method	 Applying DC injection braking 	23
Building		
Interface		
Circuits with	• Using input signals	23
External	• Using output signals	25
Devices		
	Adjusting torque according to application	25
Adjusting	Preventing motor from stalling	26
Motor Torque	(current limit)	-
Decreasing		
Motor Speed	Slip compensation	27
Fluctuation	Sup compensation	27
Protecting	Motor overload detection	27
Motor		

The set value displayed in _____ is factory setting.

Items Should be Verified Before Operation

Accel/decel time setting
Accel time 1, 2 n 1 B
Decel time 1, 2 n : 7 n : 9
Accel time : Sets the time needed for the motor to accelerate to the maximum output frequency from the stopped status.
Decel time : Sets the time needed for the motor to
stop from the maximum output frequency.
FREQUENCY
MAX. OUTPUT FREQUENCY ACCEL TIME (n16) DECEL TIME (n17)
RUN COMMAND ON
V/f pattern setting
Max. output frequency
Max. voltage
Max. voltage output frequency n 11
Sets the V/f pattern which matches the motor characteristics. When operating at 50/60Hz or more frequency, change only the max. output frequency (n09) as follows.
n10 =200V

n11=60Hz n09=90Hz

Motor rotation direction setting

FWD/REV direction selection F/R

Sets the motor rotation direction when run command is given by the digital operator.

FWD and REV run can be switched by pressing $\overleftarrow{\ }$ or $\overleftarrow{\ }$ key.

$$For(^{FWD}_{RUN}) \rightleftharpoons rEu(^{REV}_{RUN})$$

LOCAL (operator)/REMOTE (control circuit terminal) selection

LOCAL/REMOTE switching LO/RE

Operation can be switched from digital operator or control circuit terminal. This function is valid only when stopped.

e.g. : Digital operator/control circuit terminal selection: Operation mode selection n02=1

Frequency reference selection n03=2, 3 or 4

- Local (LO) : Receives frequency reference (set at n07) and run command from digital operator
- Remote (RE) : Receives frequency reference (FR) and run command (terminals S1 and S2) of circuit control terminal
- * When local/remote selection function is allocated to multi-function input terminal, switching operation using ∧ and ∨ keys is invalid.

Motor rated current setting

Motor rated current **n 3**2

Sets motor rated current. The following table shows the standard set value for each inverter capacity. When the applicable motor rated current value differs from the value listed below, change the set value.

20P1 B0P1	20P2 B0P2	20P4 B0P4	20P7 B0P7	21P5 B1P5	22P2	23P7
	0.2 (0.25)	0.4 (0.5)	0.75 (1)	1.5 (2)	2.2 (3)	3.7 (5)
0.6	1.1	1.9	3.3	6.2	8.5	14.1
40P2	40P4	40P7	41P5	42P2	43P0	43P7
	0.55 (0.75)	1.1 (1.5)	1.5 (2)	2.2 (3)	3 (4)	3.7 (5)
0.6	1.0	1.6	3.1	4.2	7.0	7.0
	B0P1 0.1 (0.13) 0.6 40P2 0.37 (0.5)	BOP1 BOP2 0.1 0.2 (0.13) (0.25) 0.6 1.1 40P2 40P4 0.37 0.55 (0.5) (0.75)	BOP1 BOP2 BOP4 0.1 0.2 0.4 (0.13) (0.25) (0.5) 0.6 1.1 1.9 40P2 40P4 40P7 0.37 0.55 1.1 (0.5) (0.75) (1.5)	BOP1 BOP2 BOP4 BOP7 0.1 0.2 0.4 0.75 (0.13) (0.25) (0.5) (1) 0.6 1.1 1.9 3.3 40P2 40P4 40P7 41P5 0.37 0.55 1.1 1.5 (0.5) (0.75) (1.5) (2)	BOP1 BOP2 BOP4 BOP7 B1P5 0.1 0.2 0.4 0.75 1.5 (0.13) (0.25) (0.5) (1) (2) 0.6 1.1 1.9 3.3 6.2 40P2 40P4 40P7 41P5 42P2 0.37 0.55 1.1 1.5 2.2 (0.5) (0.75) (1.5) (2) (3)	BOP1 BOP2 BOP4 BOP7 B1P5 22P2 0.1 0.2 0.4 0.75 1.5 2.2 (0.13) (0.25) (0.5) (1) (2) (3) 0.6 1.1 1.9 3.3 6.2 8.5 40P2 40P4 40P7 41P5 42P2 43P0 0.37 0.55 1.1 1.5 2.2 3 (0.5) (0.75) (1.5) (2) (3) (4)

Operation mode selection

Run command selection **nG2**

Frequency reference selection **D**

Selects whether operation is performed by digital operator or control circuit terminal.

Setting	Run Command הםב
0	Operator
1	Control circuit terminal S1, S2
2	Communication
Setting	Frequency Reference
Setting	
0	Volume
1	Operator (Frequency reference 1)
2	Control circuit terminal FR (0 to 10V)
3	Control circuit terminal FR (4 to 20mA)
4	Control circuit terminal FR (0 to 20mA)
6	Communication (register No., 0002H)

Notes : When set to 2 or 3 (current input reference), dip switch setting must be changed. For details, refer to the instruction manual.

Constant set-up

Password

The following table describes the data which can be set or read when n01 is set.

Setting	Constant
0 (Constant write disable)	Only n01 can be set, n01 to n79 can be read
1	n01 to n79 read/set
6	Fault history clear
8*	Constant initialization (factory setting: 2-wire sequence)
9*	Constant initialization (3-wire sequence)

* Initialization resets the value to factory setting.

VS mini J7

The set value displayed in ______ is factory setting.

Setting Operating Condition

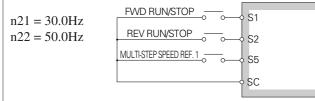
Reverse run prohibit

Reverse run prohibit **n35**

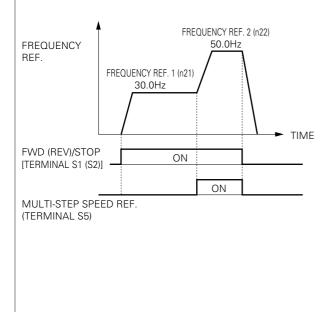
"Reverse run disabled" setting does not accept a reverse run command from the control circuit terminal or digital operator. This setting is used for applications where a reverse run command can cause problems.

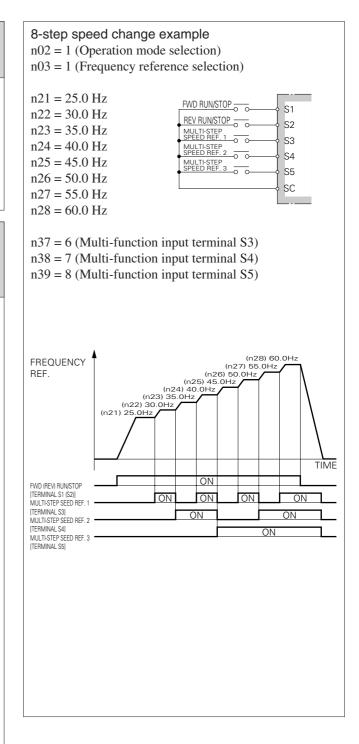
Setting	Description
0	Reverse run enabled.
1	Reverse run disabled.

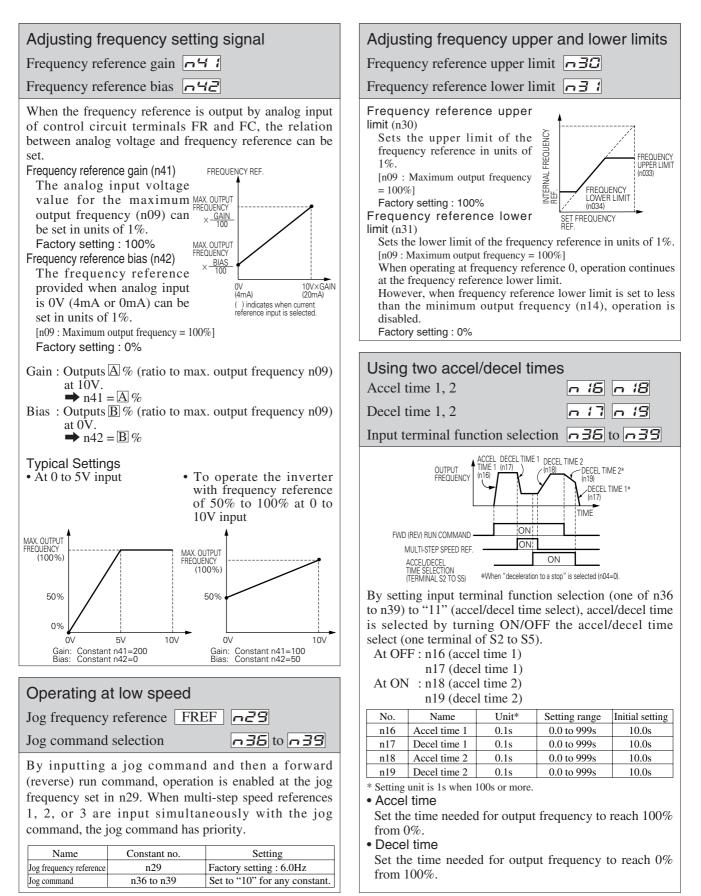
Multi-step speed selection


Frequency referenceFREFn21ton29Multi-function input terminal function selectionn35ton39

By combining frequency reference and input terminal function selections, up to 9-step speed can be set.


2-step speed change example


n02 = 1 (Operation mode selection)


n03 = 1 (Frequency reference selection)

Note : When n03 is set to 0, 2, 3, or 4, frequency reference 1 (n21) is disabled and frequency reference from volume (0) or control circuit terminal (FR) is enabled.

-60

The set value displayed in _____ is factory setting.

Automatic restart after momentary power loss

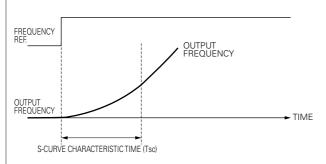
Operation selection after momentary power loss

When momentary power loss occurs, operation restarts automatically.

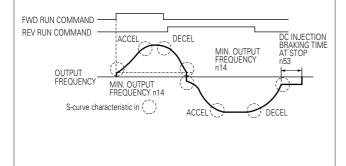
Setting	Description
0	Continuous operation after momentary power loss not provided.
1*	Continuous operation after power recovery within 0.5 second.
2*†	Continuous operation after power recovery (Fault output not provided).

* Hold the operation command to continue the operation after recovery from a momentary power loss.

[†] When 2 is selected, operation restarts if power supply voltage reaches its normal level. No fault signal is output.


Soft-start characteristics

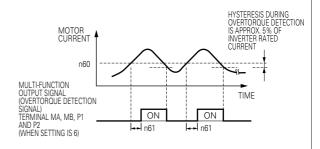
S-curve accel/decel time selection $\neg \mathcal{Z}\mathcal{G}$


To prevent shock at machine start/stop, accel/decel can be performed in S-curve pattern.

Setting	S-curve characteristic time
0	S-curve characteristic not provided
1	0.2 second
2	0.5 second
3	1.0 second

Note : S-curve characteristic time is the time from accel/decel rate 0 to a regular accel/decel determined by the set accel/decel time.

Time chart at FWD/REV run switching at deceleration to a stop



Torque detection

Overtorque	detection	function	selection	n55
^				

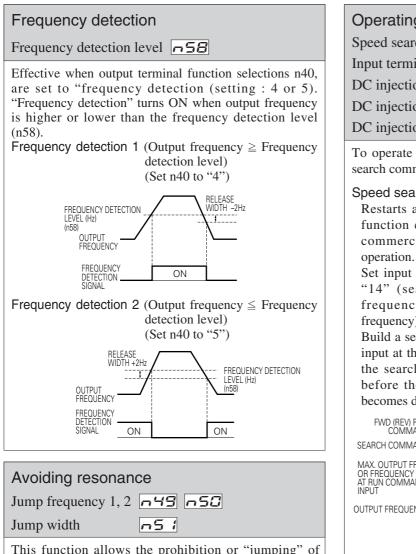
- Overtorque detection level
- Overtorque detection time In6 1

If excessive load is applied to the machine, output current increase can be detected by output alarm signals at multi-function output terminals MA, MB and MC. To output overtorque detection signal, set multi-function output terminal selection n40 to "overtorque detection (set 6 or 7)".

Overtorque detection function selection 1 (n59)

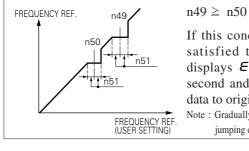
Setting	Description	
0	Overtorque detection not provided.	
1	Detected only during constant-speed running, and operation continues after detection.	
2	Detected only during constant-speed running, and operation stops after detection.	
3	Detected during running, and operation continues after detection.	
4	Detected during running, and operation stops after detection.	

Continuing operation by automatic fault reset


No. of fault retry times **-48**

Sets the inverter to restart and reset fault detection [overcurrent (OC) or overvoltage (OV)] after a fault occurs.

The number of self-diagnosis and retry attempts can be set at n48 up to 10 times.


The number of retry attempts are cleared to 0 in the following cases :

- If no other fault occurs within 10 minutes after retry
- When the fault reset signal is ON after the fault is detected
- Power supply is turned OFF

This function allows the prohibition or "jumping" of critical frequencies so that the motor can operate without resonance caused by machine systems. This function is also used for dead band control. Setting the value to 0.0Hz disables this function.

Set jump frequency 1, 2 or 3 as follows:

If this condition is not satisfied the inverter displays *Err* for one second and restores the data to original settings. Note : Gradually changes without jumping during accel/decel.

Operating coasting motor without trip

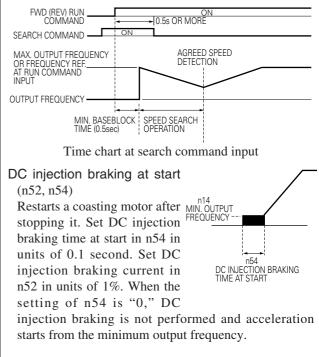
Speed search command

Input terminal function selection $\neg \exists \Box$ to $\neg \exists \Box$

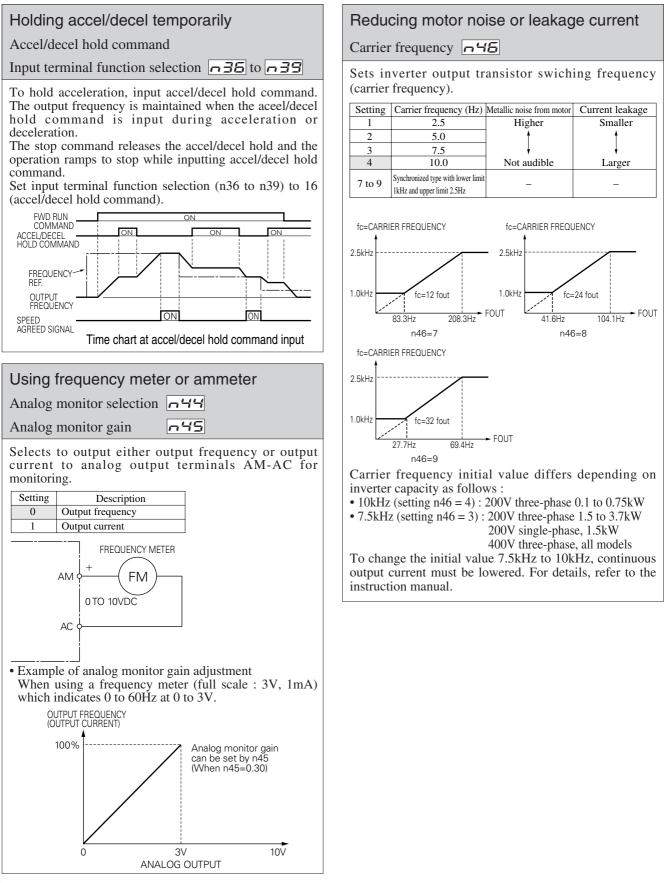
DC injection braking at start

DC injection braking current **n52** DC injection braking time at start **n54**

To operate coesting motor without trip, use the s


To operate coasting motor without trip, use the speed search command or DC injection braking at start.

Speed search command


Restarts a coasting motor without stopping it. This function enables smooth switching between motor commercial power supply operation and inverter operation.

Set input terminal function selection (n36 to n39) to "14" (search command from maximum output frequency) or "15" (search command from set frequency).

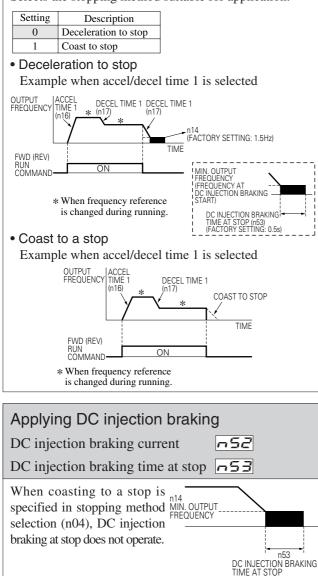
Build a sequence so that FWD (REV) run command is input at the same time as the search command or after the search command. If the run command is input before the search command, the search command becomes disabled.

The set value displayed in _____ is factory setting.

Selecting Method to Stop

Operator stop key selection

Operator stop key selection **____**


Selects processing when STOP key is depressed during operation from control circuit terminal or communication.

Setting	Description	
0	STOP key effective when running from terminals or communication. When STOP key is depressed, the inverter stops according to the setting of constant n04. At this time, the digital operator displays " $S \subset P$ " alarm (blinking). This stop command is held in the inverter until both forward and reverse run commands are open or operation command from communication is "0".	
1	STOP key ineffective when running from terminals or communication.	

Selecting stopping method

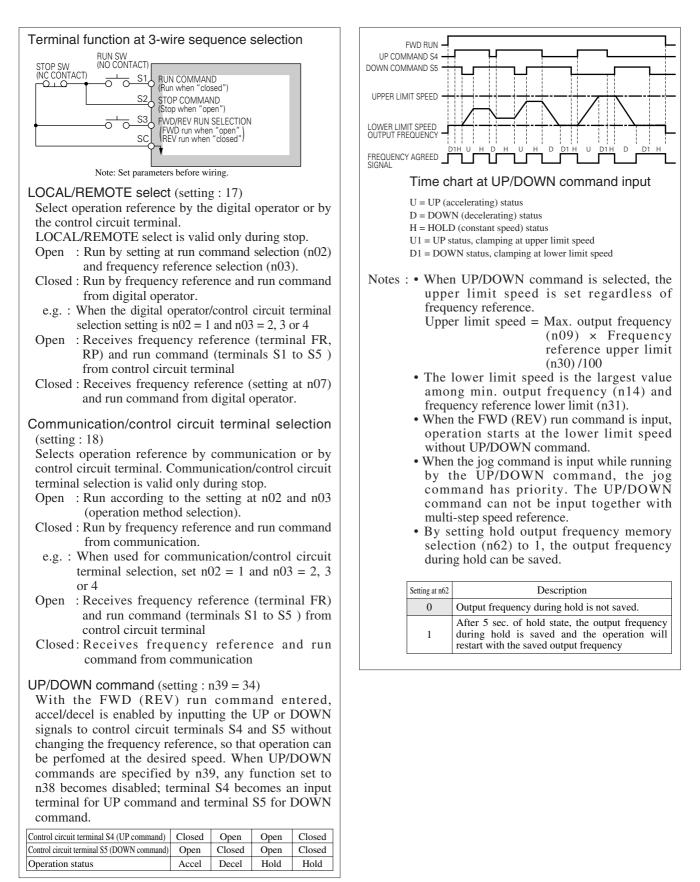
Stopping method selection

Selects the stopping method suitable for application.

Building Interface Circuits with External Devices

Using input signals

Input terminal function selection $\neg \exists \exists$ to $\neg \exists \exists$


Multi-function input terminals S2 to S5 functions can be changed when necessary by setting constants n36 to n39, respectivery. The same value can not be set to different constant setting.

- Terminal S2 function : Set to n36 : Factory setting 2
- Terminal S3 function : Set to n37 : Factory setting 5
- Terminal S4 function : Set to n38 : Factory setting 3
- Terminal S5 function : Set to n39 : Factory setting 6

Setting		Description	Ref. Page
0	FWD/REV run command (3-wire sequence selection)	Setting enabled only for n052	24
2	REV run command (2-wire sequence)	_	_
3	External fault (NO contact input)	Inverter stops by external fault signal input.	
4	External fault (NC contact input)	Digital operator display is " EF □*"	_
5	Fault reset	Resets fault. It is disabled with run signal entered.	_
6	Multi-step speed reference 1	-	
7	Multi-step speed reference 2	-	18
8	Multi-step speed reference 3	_	
10	Jog command	_	19
11	Accel/decel time select	-	19
12	External baseblock (NO contact input)	Motor coasts to stop by this signal input.	
13	External baseblock (NC contact input)	Digital operator display " 66 " (blinking).	-
14	Search command from max. output frequency	Speed search command	21
15	Search command from set frequency	signal	21
16	Accel/decel hold command	-	22
17	LOCAL/REMOTE selection	-	24
18	Communication/Control circuit terminal selection	_	24
19	Emergency stop fault (NO contact input)	Inverter stops by emergency stop signal input according to stopping	_
20	Emergency stop alarm (NO contact input)	method selection (n04). When frequency deceleration to a stop (n04=0) is selected, inverter	_
21	Emergency stop fault (NC contact input)	decelerates to a stop according to decel time setting 2 (n19). Digital	-
22	Emergency stop alarm (NC contact input)	operator displays "5," " (lights at fault, blinks at alarm).	_
34	UP/DOWN command	Setting is enabled only for n39.	24
35	Self-test	Setting is enabled only for n39.	-

* : A number 2 to 5 is displayed in □ corresponding to the number of terminal S2 to S5 respectively.

The set value displayed in _____ is factory setting.

* : Effective only when with option unit.

Using output signals

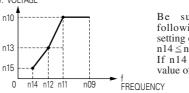
Multi-function output terminal function selection

Multi-function output terminal MA and MB, functions can be changed when necessary by setting constants n40.

• Terminal MA and MB functions : Set to n40

Setting	Function Name	Description	Ref. Page				
0	Fault	"Closed" (ON) when inverter fault occurs.	-				
1	Running	"Closed" (ON) when FWD or REV run command is input, or when the inverter outputs voltage.	_				
2	Speed agreed	_	Figure				
3	Zero speed	"Closed" (ON) when the inverter output frequency is less than min. output frequency	-				
4	Frequency detection 1 (output frequency \geq frequency detection level)	_	01				
5	Frequency detection 2 (output frequency \leq frequency detection level)	_	21				
6	Overtorque detection (NO contact output)	_	20				
7	Overtorque detection (NC contact output)	_	20				
10	Minor fault (alarm display)	_	28				
11	During baseblock	"Closed" (ON) when the inverter output is shut off.	-				
12	Operation mode	"Closed" (ON) when "LOCAL" is selected by LOCAL/REMOTE selection	-				
13	Inverter run ready	"Closed" (ON) when the inverter is ready to operate without any fault.	_				
14	In fault retry	"Closed" (ON) during fault retry.	-				
15	Low voltage (UV) detected	"Closed" (ON) when the inverter is detecting low voltage.	_				
16	In REV run	_	-				
17	In speed search	"Closed" (ON) during speed search of inverter.	21				
18	18 Data output from communication By command from MEMOBUS communication, multi-function output terminal is operated independently from the inverter operation.						
Facto	ry settings n40 : 1						
DE W	TECTION	RELEASE WIDTH +4Hz FREQUENCY REF					
OL FR							
SPEE SIGN	AGREED ON						
Setting example of "Speed agreed signal" (setting = 2)							

Adjusting Motor Torque


Adjusting torque according to application				
Max. output frequency	-09			
Max. voltage	n 13			
Max. voltage output frequency	n : :			
Mid. output frequency	n 12			
Mid. output frequency voltage	n 13			
Min. output frequency	n 14			
Min. output frequency voltage	n 15			
Torque compensation gain	<u>-63</u>			

Adjust motor torque by using "V/f pattern" and "full-range automatic torque boost".

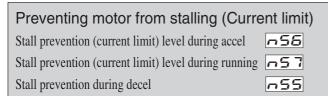
V/f pattern setting

Set V/f pattern by n09 to n15 as described below. Set each pattern when using a special motor (high-speed motor, etc.) or when requiring special torque adjustment of machine.

Be sure to satisfy the following conditions for the setting of n09 to n15. $n14 \le n12 < n11 \le n09$ If n14 = n12 is set, the set value of n13 is disabled.

Constants No.	Name	Unit	Setting Range	Initial Setting
n09	Max. output frequency	0.1Hz	50.0 to 400Hz	60.0Hz
n10	Max. voltage	1V	1 to 255V	200V*
n11	Max. voltage output frequency (base frequency)	0.1Hz	0.2 to 400Hz	60.0Hz
n12	Mid. output frequency	0.1Hz	0.1 to 399Hz	1.5Hz
n13	Mid. output frequency voltage	1V	1 to 255V	12V*
n14	Min. output frequency	0.1Hz	0.1 to 10.0Hz	1.5Hz
n15	Min. output frequency voltage	1V	1 to 50V	12V*

Note : Refer to the instruction manual for details of setting.

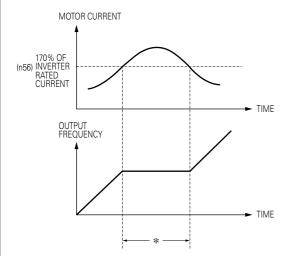

* : Twice for 400V class.

Full-range automatic torque boost

Motor torque requirement changes according to load conditions. Full-range automatic torque boost adjusts voltage of V/f pattern according to the requirement. The VS mini J7 automatically adjusts the voltage during constant-speed operation as well as during acceleration. The required torque is calculated by the inverter.

Normally, no adjustment is necessary for torque compensation gain (n63 factory setting = 1.0). When the wiring distance between the inverter and the motor is long, or when the motor generates vibration, change the torque compensation gain. In these cases, reset the V/f pattern (n09 to n15).

The set value displayed in _____ is factory setting.



Stall prevention (current limit) level during accel (n56)

Automatically adjusts the output frequency and the output current according to the load to continue operation without stalling the motor.

During acceleration if the output current exceeds 170% of the inverter rated current [the value set for n56], acceleration stops and then frequency is maintained.

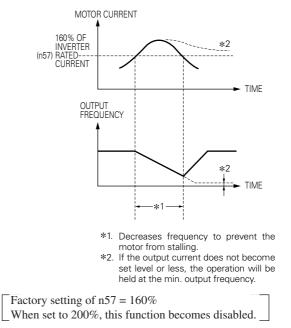
When the output current goes down to 170% [the value set for n56], acceleration starts. Inverter rated current becomes 100%.

*Holds the acceleration to prevent the motor from stalling.

Factory setting of n56 = 170% When set to 200%, this function becomes disabled.

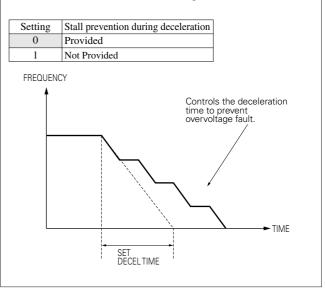
In the constant output area [output frequency \geq max. voltage output frequency (n11)], the stall prevention level during acceleration is automatically decreased by the following equation.

```
Stall prevention (current limit) level during accel in constant output area
```


= 170% [n56 setting] x

Output frequency

Stall prevention (current limit) level during running During agreed speed if the output current exceeds 160% of the inverter rated current [the value set for n57], deceleration starts.


When the output current exceeds 160% [the value set for n57], deceleration continues.

When the output current goes down to the value, acceleration starts, up to the set frequency.

Stall prevention (current limit) during deceleration (n55)

To prevent overvoltage during deceleration, the inverter automatically extends the deceleration time according to the value of main circuit DC voltage.

Decreasing Motor Speed Fluctuation

Slip compensation			
Slip compensation gain -55			
Motor no-load current n55			

As the load becomes larger, the motor speed is reduced and motor slip value is increased when V/f control mode is selected.

The slip compensating function controls the motor speed at a constant value even if the laod varies. When inverter output current is equal to the motor rated current, compensation frequency is added to the output frequency.

Compensation frequency = Motor rated slip value (n64)

	Output current – Motor	r no-load current (n65)
X	Motor rated	Motor no load

current (n32)	- current (n65)
× Slip compensation gain	(n66)

× onp compensatio

Constants

Constant No.	Function Name	Setting Unit	Setting Range	Factory Setting
n32	Motor rated current	0.1A	0 to 120% of inverter rated current	*
n64	Motor rated slip	0.1Hz	0.0 to 20.0Hz	*
n66	Slip compensation gain	0.1	0.0 to 2.5	0.0
n65	Motor no-load current	1%	0 to 99% (100% = motor rated current n32)	*
n67	Slip compensation primary delay time	0.1s	0.0 to 25.5s When 0.0s is set, delay time becomes 2.0s	2.0s

* : Differs depending on inverter capacity.

Notes : • When output frequency < min. output frequency (n14), slip compensation is not performed.

• During regenerative operation, slip compensation is not performed.

Motor Protection

Motor overload detection

Motor rated current

Electronic thermal motor protection selection $\neg \exists \exists$

Electronic thermal motor protection time constants setting $\neg \exists 4$

The VS mini J7 protects against motor overload with a built-in electronic thermal overload relay.

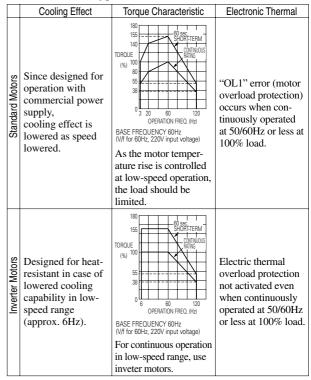
n32

Motor rated current (electric thermal base current) (n32) Set to the rated current value shown on the motor nameplate.

Motor overload protection selection (n33)

Setting	Electronic Thermal Characteristics		
0	For standard motor		
1	For inverter motor		
2	Electronic thermal motor protection not provided		

Motor overload protection selection (n34)


The initial value is 8 min. of standard rating. Set 5min. rating for short-term rating.

When operating with one inverter connected to one motor, an external thermal relay is not required.

When operating severad motors with one inverter, install a thermal relay on each motor.

Standard motors and inverter motors

Motors are classified into standard motors and inverter motors according to its cooling capabilities. Therefore, the motor overload function operates differently between motor types.

PROTECTIVE FUNCTIONS

VS mini J7

 $- \dot{\nabla}_{-} : ON \quad \bigcup_{n=1}^{m} : BLINKING \quad \bullet : OFF$

Alarms and Corrective Actions

Alarr	n Display	Inverter	Fundamention	
Digital Operator	RUN (Green) ALARM (Red)	Status	Explanation	Causes and Corrective Actions
BLINKING			UV (Main circuit low voltage) Main circuit DC voltage drops below the low-voltage detection level while the inverter output is OFF. Detection level 200V class : Approx. 200V or less (for single-phase, approx. 160V or less) 400V class : Approx. 400V or less Control power fault : Control power fault detected while inverter stopped.	Check the following : • Power supply voltage • Main circuit power supply wiring is connected. • Terminal screws are securely tightened.
DLI BLINKING			OV (Main circuit overvoltage) Main circuit DC voltage exceeds the overvoltage detection level while the inverter output is OFF. Detection level 200V class : Approx. 410V or more 400V class : Approx. 820V or more	Check the power supply voltage.
BLINKING) Ü		OH (Cooling fin overheat) Intake air temperature rises while the inverter is stopped.	Check the intake air temperature.
EAL BLINKING			CAL (MEMOBUS in waiting) After power ON with n02 (operation mode selection) set to 2 and n03 (frequency reference selection) to 6, normal transmission data is not received from PLC.	Check communication devices and transmission signals.
0P 🗆		Warning Does not output fault. Auto- matically	 OP (Setting error) OPE □ (Constant setting error when setting constants from MEMOBUS) OP1 : Same set values are input to constants n36 to n39 for multi-function input selection. OP2 : Improper size comparison of setting for V/f constants n09, n11, n12 and n14 OP3 : Set value of motor rated current (n32) exceeds 150 % of inverter rating. OP4 : Frequency reference upper limit (n30) < Frequency reference lower limit (n31) OP5 : Improper size comparison among jump frequency 1 (n49), 2 (n50) 	Check set value.
BLINKING	-\.	recover after the fault	OL3 (Overtorque detection) Inverter output current exceeds overtorque detection level (n60)	Decrease load, increase accel/decel time.
SE- BLINKING		eliminated	SER (sequence error) Inverter received LOCAL/REMOTE selection command signal, or communication/control circuit selection command signal during operation.	Check external circuit (sequence).
bb Blinking			BB (external base blocked) Inverter stops output upon receiving an external base block signal. (Note : Resetting external base block signal restarts operation.	Check external circuit (sequence).
EF BLINKING	-,⊂,- ,, ,, ,,		EF (FWD and REV command simultaneous input) FWD command and REV command from control circuit terminal are simultaneously "Closed". When command is "Closed" for 500ms and more, inverter stops operation by setting stopping method selection (n04).	Check external circuit (sequence).
57 P BLINKING	or 		STP (Operator function stop)STOP/RESET key is pressed during running by FWD orREV command from control circuit terminal orcommunication. In this case, inverter stops operation bysetting of stopping method selection (n04).STP (emergency stop)At receiving emergency stop alarm signal, inverter stopsoperation by setting of stopping method selection (n04).	 Open FWD or REV command from contro circuit terminal. Check external circuit (sequence)
FAR BLINKING			FAN (Cooling fan fault) Cooling fan is locked.	Check the followings : • Cooling fan • Power supply connection of cooling fan
			CE (MEMOBUS communication fault) Communication data are not received normally	Check communication devices and communication singals.

Faults and Corrective Actions

t Display			
Digital RUN (Green)		Explanation	Causes and Corrective Actions
		OC (overcurrent) Inverter output current momentarily exceeds approx. 250 % of rated current.	 Short-circuit or grounding at inverter output side Excessive load GD² Extremely rapid accel/decel time (n16 to n19) Special motor used Starting motor during coasting Motor of a capacity greater than the inverter rating has been started. Magnetic contactor open/closed at the inverter output side Check the cause, and restore the operation. Note: Before turning the power ON again, make sure that no short-circuit or ground fault occurs at the Inverter output.
		(control power supply fault) Voltage fault of control power supply is detected.	Turn OFF, and ON power. If the fault remains, replace the inverter.
		OV (main circuit overvoltage) Main circuit DC voltage exceeds the overvoltage detection level due to excessive regenerative energy from the motor. Detection level 200V class : approx. 410V and more 400V class : approx. 820V and more	 Insufficient decel time (constants n17 and n19) Large minus load at lowering (elevator, etc.) Increase decel time. Connect optional braking resistor.
• -☆-	Protective Operation Output is shutt OFF	 UV1 (main circuit low-voltage) Main circuit DC voltage drops below the low-voltage detection level while inverter output is ON. Detection level 200V class : approx. 200V and less (approx. 160V and less for single-phase) 400V class : approx. 400V and less 	 Reduction of input power supply voltage Open phase of input supply Occurrence of momentary power loss Check the following: Power supply voltage Main circuit power supply wiring is connected Terminal screws are securely tightened.
	coasts to a stop.	OH (cooling fin overheat) Temperature rise due to inverter overload operation or intake air temperature rise.	 Excessive load Improper V/f pattern setting Insufficient accel time if the fault occurs during acceleration Intake air temperature exceeding 50 °C Cooling fan is stopped. Check the following: Load size V/f pattern setting (n09 to n15) Intake air temperature
		OL1 (motor overload) Motor overload protection activated by built-in electronic thermal overload relay.	 Check the load size and V/f pattern setting (n09 to n15) Set n36 to the rated current on motor nameplate.
		OL2 (inverter overload) Inverter overload protection activated by built-in electronic thermal overload relay.	 Check the load size and V/f pattern setting (n09 to n15) Check the inverter capacity
		OL3 (overtorque detection) When V/f mode is selected, inverter output current exceeds the overtoraue detection level (n60). If overtorque is detected, inverter operates according to the setting at n59)	Check the driven machine and correct the cause of the fault, or increase the value of n60 up to the highest allowable value for the machine.
		GF (ground fault)* Inverter output ground fault current exceeds the inverter rated current.	Check the connection at output side wiring and the motor. Check the cause, and restore the operation. Note: Before turning the power ON again, make sure that no short-circuit or ground fault occurs at the Inverter output.
	TUSPIAY	RUN (Green) Status ALARM (Red) Status Protective Protective Output is Shutt OFF and motor coasts to a	RUN (Green) Inverter Explanation ALARM (Fled) Status OC (overcurrent) Inverter output current momentarily exceeds approx. 250 % of rated current. Inverter output current momentarily exceeds approx. 250 % of rated current. Inverter output current momentarily exceeds approx. 250 % of rated current. Inverter output current momentarily exceeds approx. 250 % of rated current. Inverter output current momentarily exceeds approx. 250 % of rated current. Inverter output current momentarily exceeds approx. 250 % of rated current. Inverter output current momentarily exceeds approx. 250 % of rated current. Inverter output current exceeds the overvoltage detection level due to excessive regenerative energy from the motor. Detection level 2000 class: approx. 4100 and more 4000 class: approx. 2000 and less Inverter output is Shutt OFF and motor coasts to a stop. Ut1 (main circuit low-voltage) 4000 class: approx. 4000 and less Inverter overload stop. OH (cooling fin overheat) Temperature rise due to inverter overload operation or intake air temperature rise. OL1 (motor overload) Motor overload protection activated by built-in electronic thermal overload relay. OL2 (inverter overload protection activated by built-in electronic thermal overload relay. OL3 (overload elected), inverter output current exceeds the overload relay. OL3 (overload elected), inverter output current exceeds the overload relay. OL3 (overload elected), inverter

* The ground fault here is one which occurs in the motor wiring while the motor is running. A ground fault may not be detected in the following cases.
• A ground fault with low resistance which occurs in motor cables or terminals.
• A ground fault occurs when the power is turned ON.

Faults and Corrective Actions (Cont'd)

Fault Display		Inverter Status	Explanation	Causes and Corrective Actions
	ALARM (Red)		EF (external fault) Received an external fault signal. EF0 : External fault command from MEMOBUS EF2 : External fault input from control circuit terminal S2 EF3 : External fault input from control circuit terminal S3 EF4 : External fault input from control circuit terminal S4 EF5 : External fault input from control circuit terminal S5	Check external circuit (sequence).
FOO			CPF-00 (CPF : control circuit fault) Communication with digital operator is disabled even 5 sec. after power is ON.	Turn OFF power, then turn ON power again. If fault remains, replace the inverter.
FO :		Protection Operation	CPF-01 Communication fault occurrs for 5 sec. or more after communication started with digital operator	Turn OFF power, then turn ON power again. If fault remains, replace the inverter.
FOH	• -Ŏ-	Output is shutt OFF and motor coasts to a stop.	CPF-04 EEPROM fault of inverter control circuit	 Save all the constant data, then initialize the constants (refer to page 17 for initialization of constants) Turn OFF power, then ON again. If the fault remains, replace the inverter.
Fas			CPF-05 A/D converter fault of inverter control circuit	Turn OFF power, and ON again. If fault remains, replace the inverter.
FOS			CPF-06Optional card connection faultNon-applicable option card is connected.	Turn OFF power and properly connect the card, then turn ON power.Check the inverter software NO (n79).
FØ٦			CPF-07 Digital operator control circuit (EEPROM, A/D converter fault	Turn OFF power once, then turn ON power again. If fault remains, replace the inverter.
CE			CE (MEMOBUS fault) Communication data cannot be received properly.	Check communication device and signals.
srp	"©= - <u>`</u> ,-' or -`,-'-	Stops according to constant setting	STP (emergency stop) At receiving an emergency stop fault signal, inverter stops output by setting stopping method selection (n04)	Check external circuit (sequence).
OFF	•	Protective Operation Output is shutt OFF and motor coasts to a stop.	 Insufficient power supply voltage Control power supply fault Hardware fault 	Check the following: • Power supply voltage • Main circuit power supply wiring • Terminal screws are securely tightened. • External control circuit (sequence) • Replace the inverter

NOTES ON USE

Inverter

Selection

- Use a DC reactor (option) or an AC reactor (option) on the inverter power side when the inverter is connected directly to a large-capacity power transformer (600kVA and over within 10m distance) or when a phase advance capacitor is switched. Otherwise excess peak current may occur in the power feed circuit and the converter section may be damaged. A DC reactor or an AC reactor is also required when a thyristor converter such as a DC drive is connected to the same power system.
- When a special motor is used or more than one motor is driven in parallel with a single inverter, select the inverter capacity so that 1.1 times of the total motor rated current does not exceed the inverter rated output current.
- The starting and accelerating characteristics of the motor driven by an inverter are restricted by the overload current ratings of the inverter. Compared to running with commercial power supply, lower touque output should be expected. If high starting torque is required, use an inverter of higher capacity or increase the capacities of both the motor and the inverter.
- When an error occurs, a protective circuit is activated and the inverter output is turned OFF. However, the motor cannot be stopped immediately. Use a mechanical brake and hold the equipment for a fast stop if necessary.
- Terminals +1 and +2 are for DC reactor (option). Do not connect other equipment.

Installation

- Avoid oil mist or dust. Place the inverter in a clean area or house it in a totally-enclosed case so that no contamination enters. To use the totally-enclosed case, select the cooling method and panel dimensions so the inverter ambient temperature will be within the allowable range.
- Do not install the inverter on flammable material, such as wood.
- Install the inverter on a wall with the longer side in the vertical position.

Setting

- The inverter can be driven at an output frequency of up to 400Hz with the digital operator. Setting errors may create a dangerous situation. Set the upper limit with the upper limit frequency setting function. (Maximum output frequency in external input signal operation is preset to 60Hz at the factory.)
- Large DC injection braking operating voltages and times may cause motor overheating.
- Motor accel/decel time is determined by the motor generating touque, load torque, and load inertia WK² (GD²). If the stall prevention function is activated during accel/decel, set the accel/decel time longer. After the stall prevention function is activated, the accel/decel time is extended to a length that the inverter can handle. To shorten the accel/decel time, increase the capacity of the inverter and possibly the motor.

Operation

- Applying power to inverter output terminals U/T1, V/T2, W/T3 will damage the inverter. Double check wiring and sequence before turnig the power ON.
- If magnetic contactor (MC) is used on the primary side of the inverter, do not use the MC for starting and stopping the inverter. Otherwise, the inverter life may be reduced.
- After turning power to the inverter OFF, electric charges in the internal capacitors are retained temporarily. Wait until the charge LED goes off before touching the inside of the inverter.
- Do not subject the inverter to halogen gases, such as fiuorine, chlovine, bromine, and iodine, at any time even during transportation or installation.

Peripheral Devices

Installation and selection of molded-case circuit breaker

On the input power side, a molded-case circuit breaker (MCCB) to protect inverter primary wiring should be installed. The inverter power-factor (depending on power voltage, output frequency, and load) must be taken into account for selecting MCCB. For standard settings, see page 36. If a full electromagnetic MCCB is to be used, select a larger capacity because the operating characteristics are altered by harmonic current. A leakage current breaker threshold of 200mA and above, or of inverter (suppressing high frequency) use is recommended.

Use of input side magnetic contactor

The inverter can be used without an input side magnetic contactor (MC). An input MC can be used to prevent an automatic restart after recovery from an external power loss during remote control operation. However, do not use the MC frequently for start/stop operation, or it will lead to a reduced reliability. When the digital operator is used, automatic restart after power failure is disabled, so that MC starting is impossible. Although the MC can stop the inverter, regeneration braking is disabled and the motor coasts to a stop.

Use of secondary magnetic contactor

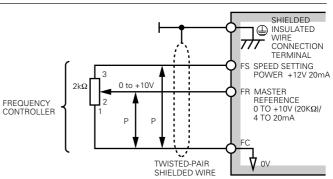
In general magnetic contactors on the output of the inverter, for motor control should not be used. Starting a motor with the inverter running will cause large surge currents and the inverter overcurrent protector to trigger. If an MC is used for switching to commercial power supply, switch MC after the inverter and the motor stop. To switch during motor rotation, use the speed search command. (See page 21.)

Use of overload relay

The inverter includes an electronic thermal protective function to protect the motor from overheating. However, when multi-drive by one inverter is used, place a overload relay between the inverter and the motor. Set 2 in n33, and set the ovverload relay to the current nameplate value at 50Hz, or 1.1 times of that at 60Hz.

Power-factor improvement (elimination of phase advance capacitor)

To improve the power-factor, install a DC reactor or an AC reactor on the inverter's power side. Power-factor improvement capacitor or surge suppressors on the inverter output side will be damaged by the harmonic component in the inverter output. Also, the overcurrent caused in the inverter output will trigger the overcurrent protection. To avoid this, do not use capacitors or surge suppressors in the inverter's output. To improve the power-factor, install an AC reactor on the inverter primary side.

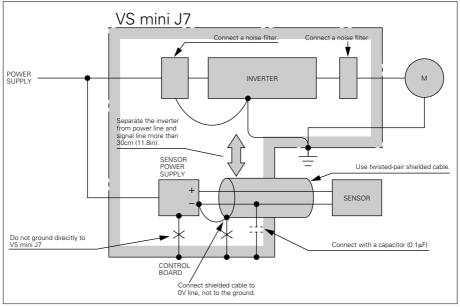

Radio frequency interference

Because the inverter I/O (main circuit) contains a higher harmonics component, it may emit RFI noise to communication equipment (AM radio, etc.) near the inverter. Use a noise filter to decrease the noise. Use of a metalic conduit between the inverter and motor and grouding the conduit is also effective. Proper routing of input and output lead is also recommended.

Wire thickness and cable length

If a long cable is used between the inverter and a motor (especially when low frequency is output), motor torque decreases because of voltage drop in the cable. Use sufficiently thick wire. If a long cable is used and inverter carrier frequency (main transistor switching frequency) is high, harmonic leakage current from the cable will increase to affect the inverter unit or peripheral devices. Reduce the inverter carrier frequency.

When a digital operator is to be installed separately from the inverter, use the YASKAWA remote interface and special connection cable (option). For remote control with analog signals, connect the operating signal terminal and the inverter within 30m (98.4ft) of the inverter. The cable must be routed separately from power circuits (main circuit and relay sequence circuit) so that it is not subjected to inductive interference by other equipment. if frequencies are set not only from the digital operator but also with external frequency controller, use twisted-pair shielded wire as shown in the following figure and connect the shielding to terminal.


Noise Countermeasures

The low-noise type uses high-carrier frequency PWM control, and compared to the low-carrier type tends to suffer from increased electromagnetic interference (EMI). Following are suggestions that may be effective in reducing EMI effects in your installation:

• Lower the carrier frequency (constant n46) and the interference will be reduced.

• A line noise filter is effective in eliminating sensor malfunction or AM radio static (see page 35).

• To eliminate inductive noise from the inverter power line, separate the signal lines [recommended 30cm (11.8in), minimum 10cm (3.94in)] and use twisted-pair shielded cable.

From the JEMA report

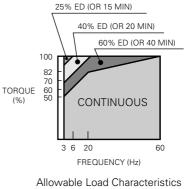
Current Leakage Countermeasures

A floating capacitance exists between the inverter power line and other drive lines, and between ground (earth) and the motor. This may carry high-frequency leakage current and affect other equipment. This phenomenon varies with the carrier frequency and the wiring distance between inverter and motor. The following measures may help to minimize the effects.

	Phenomenon	Countermeasures	
Current Leakage to Ground (earth)	Malfunction of ground fault interrupters and leakage relays	 Lower the carrier frequency (constant n46) Use a ground fault interrupter resistant to high frequencies (e. g. Mitsubishi Electric NV Series) 	
Inter-line Leakage Current	Malfunction of external thermal overload relays due to high-frequency component of leakage current	 Lower the carrier frequency (constant n46) Use an inverter with a built-in electronic thermal overload relay. 	

Wiring distance between inverter and motor, and setting of carrier frequency

Wiring Distance	Up to 50m (164.0ft)	Up to 100m (328.1ft)	More than 100m (328.1ft)
Allowable carrier frequency	10kHz or less	5kHz or less	2.5kHz or less
(Constant n46 set value)	(1 to 4, 7, 8, 9)	(1, 2, 7, 8, 9)	(1, 7, 8, 9)


Motor

Application for Existing Standard Motors

A standard motor driven by the inverter generates slightly less power than it does when it is driven with commercial power supply.

Also, the cooling effect deteriorates in low speed range so that the motor temperature rise increases. Reduce load torque in the low speed range. Allowable load characteristics of the standard motor are shown in the figure. If 100% continuous torque is required in the low speed range, use an inverter duty motor.

Also, if input voltage is high (440V or more) or wiring distance is long, consider the withstand voltage of the motor. For details, contact your YASKAWA representative.

of a Standard Motor

■High speed operation

When the motor is used above 60Hz, the motor mechanical design should be verified. Contact your motor manufacturer.

■Torque characteristics

Motor torque characteristics vary when the motor is driven by an inverter instead of commercial power supply. Check the load torque characteristics of the machine to be connected.

■Vibration

Because of the high carrier modulation technique for PWM control, the VS mini J7 reduces motor vibration to a level equal to running with a commercial power supply. Larger vibrations may occur under the following conditions:

• Response at resonant frequency of the mechanical system.

Special care is required if a machine which has previously been driven at a constant speed, is to be driven at varying speeds. Installation of antivibration rubber padding under the motor base and prohibited frequency control are recommended.

Rotator residual imbalance

Special care is required for operation at frequencies higher than 60Hz.

■Noise

Inverter operation is as quiet as operation with commercial power supply: At above rated speed (60Hz), noise may increase by motor cooling fan.

Application for Special Purpose Motors

Synchronous Motors	Contact your YASKAWA representative for selecting inverter since starting current and rated current is larger than those of standard motor. Be careful when several motors are turned ON and OFF individually at group control. They may step out.
Pole Change Motors	Select the inverter with a capacity exceeding the rated current of each pole. Pole change should be made only after the motor stops. If a pole changed while the motor is rotating, the regenerative overvoltage or overcurrent protection circuit is activated and the motor coasts to a stop.
Submersible Motors	Since the rated current of underwater motors is large compared with general purpose motors, select an inverter with a larger capacity. If the wire length between the inverter and the motor is large, use cables with sufficiently large diameter.
Explosion-proof Motors	Explosion-proof motors which are applied to an inverter must be approved as explosion-proof equipment. The inverter is not explosion-proof and should not be located where explosive gases exist.
Geared Motors	Lubrication method and continuous rotation limit differ with manufacturers. When oil lubrication is employed, continuous operation only in low speed range may cause burnout. Before operating the motor at more than 60Hz you should consult the motor manufacturer.
Single-phase Motors	Single-phase motors are not suitable for variable speed operation with an inverter. If the inverter is applied to a motor using a capacitor stack, a high harmonic current flows and the capacitor may be damaged. For split-phase start motors and repulsion start motors, the internal centrifugal switch will not be actuated and the starting coil may be burnd out. Therefore, use only 3-phase motors.

Power Transmission Mechanism (Gear Reduction, Belt, Chain, etc.)

When gear boxes and change/reduction gears lubricated with oil are used in power transmission systems, continuous low speed operation decreases the oil lubrication function. Also, operation at more than 60Hz may result in noise, reduced life, etc.

OPTIONS AND PERIPHERAL UNITS

VS mini J7

Purpose	Name	Model (Parts Code No.)	Description	Ref, page	Power Supply
Protection of inverter wiring	Molded-case circuit braker (MCCB) or ground fault interrupter*	NF30	To protect inverter wiring, always install it on the power supply side. Use a ground fault interrupter with resistance to high frequencies.	36	
Controlling the power supply by sequence	Magnetic contactor	SC-□□	Install to close/break the power circuit by sequence. Always use a surge suppressor on the coil.	36	Circuit Breaker or Leakage Breaker
Preventing output of open/close surge current	Surge suppressor	DCR2-□	Absorbs surge current by opening and closing of magnetic contactors and control relays. Must be installed on magnetic contactors or control relays near the inverter.	36	Magnetic HEFER
Isolation of I/O signals	Isolator	DGP□	Isolates the inverter input and output signals to reduce noise.	37	
Improvement of inverter input power	AC reactor	UZBA-B	When the inverter input power factor is to be improved, mount on the input side.	39	
factor	DC reactor	UZDA-B	With large-capacity power supplies (600kVA or higher), install an AC reactor.	38	Power Factor
	Input noise filter	LNFB-□ [Single-phase] LNFD-□ [3-phase]	Reduces noise through the inverter input power system or wirings. Install as close to the inverter as possible.	41	AC Reactor
Reducing effects of radio and controller noise	Finemet zero-phase reactor to reduce radio noise	F6045GB (FIL001098) F11080GB (FIL001097)	Reduces noise from the line that sneaks into the inverter input power system. Insert as close to the inverter as possible. Can be used on both the input side and output side.	40	Zero Phase Reactor
	Output noise filter	LF-□	Reduces noise as the inverter output wirings. Install as close to the inverter as possible.	42	
	Digital operator for remote operation	JVOP-144 (with volume) JVOP-146 (without volume)	Use in combination with the remote interface unit (SI-232/J7) and extension cable for remote operation.	43	
Operating investor	Cable for remote interface	(WV001) (1m) (WV003) (3m)	Use to control digital operator when using remote interface.	43	Filter
Operating inverter externally	Remote interface unit for remote operation	SI-232/J7	When using the remote control for the digital operator, connect to the inverter as interface to input data. Also use for RS-232C MEMOBUS communication.	43	- Varispeed J7
	Remote Interface Unit for Copy Unit or PC Communications Support Tool	SI-232/J7C	Can be easily attached and removed in a remote operation of the digital operator as a copy unit or PC communications support tool.	43	
Controlling the inverter by MEMOBUS communication	RS-422/485 interface unit for MEMOBUS communication	SI-485/J7	Use for RS-422 for RS-485 MEMOBUS communication with the host controller. The communication cable connector is included with this unit.	43	Power Factor Improvement DC Reactor
Simple mounting of inverter on control board inside the enclosure	DIN rail mounting attachment	(EZZ08122A) [W: 68mm] (EZZ08122B) [W: 108mm] (EZZ08122C) [W: 140mm]	Attachment to mount inverter on DIN rail. Attach to rear of inverter.	_	Grounding Output Noise Filter Zero Phase
External setting and	Frequency meter Frequency setter	DCF-6A (RH000739)	Used to set and monitor frequency externally.	42	Reactor
monitoring of frequency and	Frequency setting knob	CM-3S			
voltage	Output voltmeter	SCF-12NH	Used to monitor output voltage. The voltmeter can be used only with PWM inverters.	42	Motor
Frequency reference input, and adjusting of frequency meter and ammeter scales	Frequency meter adjusting potentiometer	(RH000850)	Used to adjust frequency meter and ammeter scales.	42	

*When using a ground fault interrupter, select one not affected by high frequencies. To prevent malfunctions, the current should be 200mA or more and the operating time 0.1s or more.
Recommended ground fault interrupters:
NV series by Mitsubishi Electric Co., Ltd.
EG, SG series by Fuji Electric Co., LTD.

Grounding

Molded-Case Circuit Breaker (MCCB) and Magnetic Contactor (MC)

Be sure to connect a MCCB between the power supply and the input AC reactor. Connect a MC if required.

Molded-case Circuit Breaker (MCCB) [Mitsubishi Electric Corporation] Power Supply Magnetic Contactor (MC) [Fuji Electric Co., Ltd]

200V Three-phase Input Series

Motor	VO mini 17 Madal	Мс	olded-Case Circu	it Breaker	(MCCB)	Magnetic Co	ntactor (MC)
Capacity	VS mini J7 Model CIMR-J7⊡A⊡	Witho	out Reactor	Wit	h Reactor	Without Reactor	With Reactor
kW		Model	Rated Current A	Model	Rated Current A	Model	Model
0.1	20P1	NF30	5	NF30	3	SC-03	SC-03
0.2	20P2	NF30	5	NF30	3	SC-03	SC-03
0.4	20P4	NF30	5	NF30	5	SC-03	SC-03
0.75	20P7	NF30	10	NF30 10	SC-03	SC-03	
1.5	21P5	NF30	20	NF30	10	SC-4-0	SC-03
2.2	22P2	NF30	20	NF30	15	SC-N1	SC-4-0
3.7	23P7	NF30	30	NF30	20	SC-N2	SC-N1

200V Single-phase Input Series

Motor		Мс	olded-Case Circu	iit Breaker	(MCCB)	Magnetic Contactor (MC)			
Capacity	VS mini J7 Model CIMR-J7⊡A⊡	Witho	out Reactor	Wit	h Reactor	Without Reactor	With Reactor		
kW		Model Rated Current A Model Rated Current A				Model	Model		
0.1	B0P1	NF30	5	NF30	3	SC-03	SC-03		
0.2	B0P2	NF30	5	NF30	5	SC-03	SC-03		
0.4	B0P4	NF30	10	NF30	10	SC-03	SC-03		
0.75	B0P7	NF30 20		NF30	15	SC-4-0	SC-4-0		
1.5	B1P5	NF30	30	NF30	20	SC-N2	SC-N1		

400V Three-phase Input Series

Motor		Мс	lded-Case Circu	it Breaker	(MCCB)	Magnetic Contactor (MC)			
Capacity	VS mini J7 Model CIMR-J7□A□	Witho	out Reactor	Witl	n Reactor	Without Reactor	With Reactor		
kW		Model	Rated Current A	Model	Rated Current A	Model	Model		
0.2	40P2	NF30	5	NF30	3	SC-03	SC-03		
0.4	40P4	NF30	5	NF30 3		SC-03	SC-03		
0.75	40P7	NF30	5	NF30	5	SC-03	SC-03		
1.5	41P5	NF30	10	NF30	10	SC-03	SC-03		
2.2	42P2	NF30	20	NF30	10	SC-4-0	SC-03		
3.0	43P0	NF30	20	NF30	10	SC-4-0	SC-03		
3.7	43P7	NF30	20	NF30	15	SC-N1	SC-4-0		

Surge Suppressor (Manufactured by Nippon Chemi-Con Corporation)

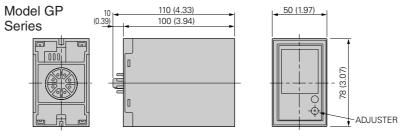
Connect surge suppressors to coils in magnetic contactors, control relays, electromagnetic valves, and electromagnetic brakes used as the VS mini J7 peripheral units.

Coils	of Magne	etic Contactor	Su	Irge Suppressor		
	and Cont	Control Relay Model Specifications				
200V	•	size Magnetic ontactors	DCR2-50A22E	220VAC 0.5 μ F+200Ω	C002417	
to 230V	Control Relay	MY-2, -3 HH-22, -23 MM-2, -4	DCR2-10A25C	250VAC 0.1 μ F+100Ω	C002482	
3	380 to 460	0V Units	RFN3AL504KD	1000VDC 0.5 μ F+220Ω	C002630	

Type DCR2-50A22E Type DCR2-10A25C Type RFN3AL504KD

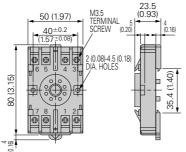
Isolator

(Insulation Type DC Transmission Converter)


Performance

Allowance	±0.25% of output span [Ambient temp : 23°C, (73.4°F)]
Temperature Influence	With $\pm 0.25\%$ of output span [The value at $\pm 10^{\circ}C$ ($\pm 50^{\circ}F$) of ambient temp.]
Aux. Power Supply Influence	With $\pm 0.1\%$ of output span (The value at $\pm 10\%$ of aux. power supply)
Load Resistance Influence	With $\pm 0.05\%$ of output span (In the range of load resistance)
Output Ripple	With ±0.5%P-P of output span
Response Time	0.5 sec. or less (Time to settle to $\pm 1\%$ of final steady value)
Withstand Voltage	2000VAC for one min. (between each terminal of input, output, power supply and enclosure)
Insulation Resistance	$20M\Omega$ and above (by 500VDC megger) (between each terminal of input, output, power supply and enclosure)

Product Line


Model	Input Signal	Output Signal	Power Supply	Code No.
DGP2-4-4	0-10V	0-10V	100VAC	CON 000019.25
DGP2-4-8	0-10V	4-20mA	100VAC	CON 000019.26
DGP2-8-4	4-20mA	0-10V	100VAC	CON 000019.35
DGP2-3-4	0-5V	0-10V	100VAC	CON 000019.15
DGP3-4-4	0-10V	0-10V	200VAC	CON 000020.25
DGP3-4-8	0-10V	4-20mA	200VAC	CON 000020.26
DGP3-8-4	4-20mA	0-10V	200VAC	CON 000020.35
DGP3-3-4	0-5V	0-10V	200VAC	CON 000020.15

Dimensions in mm (inches)

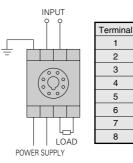
Adjuster's position or PC's varies due to models.

Socket

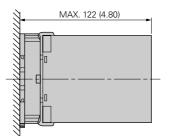
Description

Output +

Output -


Input +

Input –


Grounding

Power supply

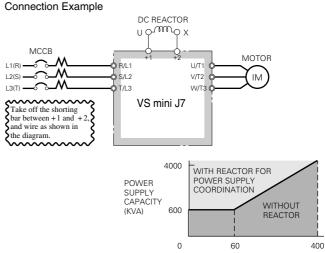
Connection

View of socket mounted

Cable Length

- 4 to 20mA : Within 100m
- 0 to 10V : Within 50m

Approx. Mass


- Model GP Series : 350g
- Socket : 60g

DC Reactor (Model UZDA-B for DC circuit)

When power capacity is significantly greater when compared to inverter capacity, or when the powerfactor needs to be improved, connect the AC or DC reactor.

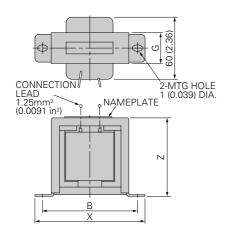
AC reactor can be used at the same time for harmonic measure.

INVERTER CAPACITY (kVA)

* 75°C(167°F), IV cable, 45°C (113°F) ambient

temperature, three or less wires connected.

200V Three-phase Input Series


Max. Applicable Motor Output	Current Value	Inductance	Parts Code	Fig. No.	Fig. No.									Approx. Mass	Loss	Wire Size*	
kW (HP)	A	mH	No.	FIG. NO.	Х	Y 1	Y ₂	Z	В	Н	К	G	φ1	<i>φ</i> 2	kg (lb)	W	mm ² (in ²)
0.4 (0.5) 0.75 (1)	5.4	8	X010048	1	85 (3.35)	_		53 (2.09)	74 (2.91)	_	_	32 (1.26)	M4	_	0.8 (2.3)	8	2 (0.0031)
1.5 (2) 2.2 (3) 3.7 (5)	18	3	X010049	2	86 (3.39)	36 (1.41)	80 (3.15)	76 (2.99)	60 (2.36)	55 (2.17)	18 (0.71)	_	M4	M5	2.0 (5.6)	18	5 (0.0085)

Note: Contact your YASKAWA representative for three-phase, 200V, 0.1 to 0.2kW and single-phase, 200V, 0.1 to 3.7kW models.

400V Three-phase Input Series

Max. Applicable Motor Output	Current Value	Inductance	Parts Code	Fig. No.									Approx. Mass	Loss	Wire Size*		
kW (HP)	A	mH	No.	FIG. NO.	Х	Y 1	Y ₂	Z	В	Н	K	G	φ1	φ2	kg (lb)	W	mm ² (in ²)
0.4 (0.5) 0.75 (1)	3.2	28	X010052	1	85 (3.35)	_	—	53 (2.09)	74 (2.91)	_	_	32 (1.26)	M4	_	0.8 (2.3)	9	2 (0.0031)
1.5 (2) 2.2 (3)	5.7	11	X010053	1	90 (3.54)	_	_	60 (2.36)	80 (3.15)	_	_	32 (1.26)	M4	_	1.0 (2.8)	11	2 (0.0031)
3.7 (5)	12	6.3	X010054	2	86 (3.39)	36 (1.41)	80 (3.15)	76 (2.99)	60 (2.36)	55 (2.17)	18 (0.71)		M4	M5	2.0 (5.6)	16	2 (0.0031)

Note: Contact your YASKAWA representative for three-phase, 400V, 0.2kW model.

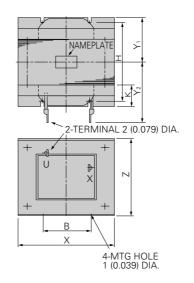
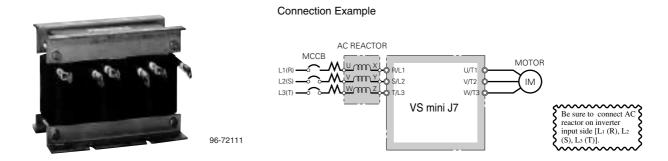



Figure 1

Figure 2

AC Reactor (Model UZBA-B for Input 50/60Hz)

When power capacity is significantly greater when compared to inverter capacity, or when the power-factor needs to be improved, connect the AC or DC reactor. In order to supress high harmonic wave, DC reactor can be used with AC reactor.

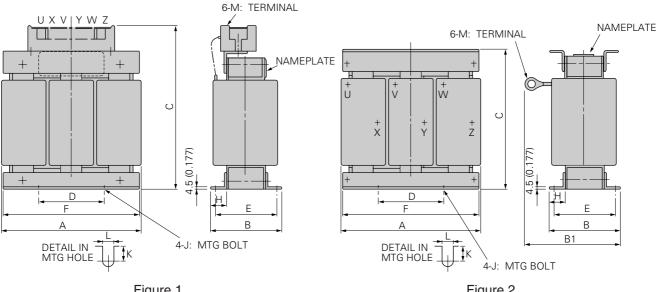
200V Three-phase Input Series

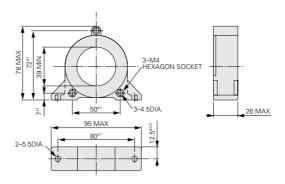
ſ	Max. Applicable	Current	Inductance	Parts			Dimensions in mm (inches)											Approx. Mass	Loss
	Motor Output kW (HP)	Value A	mH	Code No.	Fig. No.	Α	В	B1	С	D	Е	F	Н	J	K	L	М		W
ſ	0.1 (0.13)	2	7.0	X002764															
	0.2 (0.25)	2	/.0	A002704		120	$\begin{array}{c c}120 & 71\\(4.72) & (2.80)\end{array}$		120	40	50	105 20		10.5			2.5	15	
	0.4 (0.5)	2.5	4.2	X002553		(4.72) (2.8			(4.72)	(1.57)	(1.97)	(4.13)	(0.79)		(0.41)	7		(5.51)	15
	0.75 (1)	5	2.1	X002554	1									M6	Ì.	(0.28)	M4	` ´	
	1.5 (2)	10	1.1	X002489		130	88		130	50	65	130	22		11.5			3	25
	2.2 (3)	15	0.71	X002490		(5.12)	(3.46)		(5.12)	(1.97)	(2.56)	(5.12)	(0.87)		(0.45)			(6.62)	30
- [3.7 (5)	20	0.53	X002491	2	130 (5.12)	88 (3.46)	114 (4.49)	105 (4.13)	50 (1.97)	65 (2.56)	130 (5.12)	22 (0.87)	M6	11.5 (0.45)	7 (0.28)	M5	3 (6.62)	35

Note: Contact your YASKAWA representative for single-phase, 200V, 0.1 to 1.5kW models.

400V Three-phase Input Series

Max. Applicable Motor Output	Current Value	Inductance	Parts Code	Fig. No.					Dimen	sions ir	n mm (i	inches)					Approx. Mass	Loss
kW (HP)	A	mH	No.	FIG. NO.	Α	В	B1	С	D	E	F	Н	J	К	L	М	kg (lb)	w
0.2 (0.25)	13	18.0	X002561		120	71		120	40	50	105	20		10.5			2.5	
0.4 (0.5)	1.5	10.0	A002501		(4.72)	(2.80)		(4.72)				(0.79)		(0.41)			(5.51)	15
0.75 (1)	2.5	8.4	X002562	1	(4.72)	(2.00)		(4.72)	(1.57)	(1.77)	(4.15)	(0.77)	M6	(0.+1)	7	M4	(3.51)	
1.5 (2)	5	4.2	X002563	1	120	00		120	50	70	120	22	WIO	9	(0.28)			25
2.2 (3)	7.5	3.6	X002564		130 (5.12)	88 (3.46)		130 (5.12)	50 (1.97)	(2.76)	130 (5.12)	22 (0.87)		(0.35)			(6.62)	35
3.7 (5)	10	2.2	X002500		(3.12)	(3.40)		(5.12)	(1.97)	65 (2.56)	(3.12)	(0.87)		11.5 (0.45)		M5	(0.02)	43




Figure 2

Zero Phase Reactor

Finemet Zero Phase Reactor to Reduce Radio Noise (Made by Hitachi Metals, Ltd.)

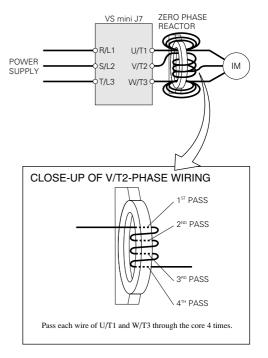
Note: Finemet is a registered trademark of Hitachi Metals, Ltd.

Model F6045GB

200V Three-phase Input Series

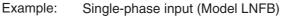
Inverte	er	Finemet Zero Phase Reactor						
Model	Recommended Wire Size mm ²	Model	Code No.	Qty.	Wiring Method			
CIMR-J7□A20P1								
CIMR-J7□A20P2								
CIMR-J7□A20P4	2				4			
CIMR-J7□A20P7		F6045GB	FIL001098	1	4 passes through core			
CIMR-J7□A21P5								
CIMR-J7□A22P2	3.5							
CIMR-J7□A23P7	5.5							

Can be used both for input and output sides of the inverter and effective on noise reduction. Pass each wire (R/L1, S/L2, T/L3 or U/T1, V/T2, W/T3) through the core 4 times.

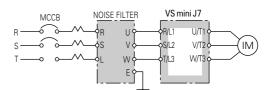

Connection Diagram (Output)

200V Single-phase Input Series


Inverte	er	Finemet Zero Phase Reactor						
Model	Recommended Wire Size mm ²	Model	Code No.	Qty.	Wiring Method			
CIMR-J7□AB0P1								
CIMR-J7□AB0P2	2				4			
CIMR-J7□AB0P4		F6045GB	FIL001098	1	4 passes through core			
CIMR-J7□AB0P7	3.5							
CIMR-J7□AB1P5	5.5							


400V Three-phase Input Series

er	Finemet Zero Phase Reactor						
Recommended Wire Size mm ²	Model	Code No.	Qty.	Wiring Method			
2	E4045CD	EII 001008	1	4 passes			
2	F00430D	FIL001098	1	through core			
		Recommended Wire Size mm ² Model	Recommended Wire Size mm ² Model Code No.	Recommended Wire Size mm ² Model Code No. Qty.			



Input Noise Filter

NOISE FILTER VS mini J7 MCCB U/T14 ЗĠ R/I (ім) 4 0 V/T2 52 5/12 Ε¢ W/T3

Three-phase input (Model LNFD)

Noise Filter without Case

Specifi-	Max. Applicable	Inverter	Rated	Madal	Product Code	Durate On data No.	Figure		C		Manadian Orana	Approx.			
cations	Motor Output kW (HP)	Capacity kVA	Current A	Model	Product Code	Prats Codes No.	Ňo.	W	D	Н	A	A'	В	Mounting Screw	Mass kg (lb)
	0.1 (0.13), 0.2 (0.25)	0.3, 0.6	10	LNFB-2102DY	72600-B2102DY	FIL 128	1	120 (4.72)	80 (3.15)	50 (1.97)	108 (4.25)	-	68 (2.68)	M4×4, 20mm (0.79in.)	0.1 (0.22)
200V Class	0.4 (0.5)	1.1	15	LNFB-2152DY	72600-B2152DY	FIL 129	1	120 (4.72)	80 (3.15)	50 (1.97)	108 (4.25)	-	68 (2.68)	M4×4, 20mm (0.79in.)	0.2 (0.44)
(Signle-)	0.75 (1)	1.9	20	LNFB-2202DY	72600-B2202DY	FIL 130	1	120 (4.72)	80 (3.15)	50 (1.97)	108 (4.25)	-	68 (2.68)	M4×4, 20mm (0.79in.)	0.2 (0.44)
(phase)	1.5 (2)	3.0	30	LNFB-2302DY	72600-B2302DY	FIL 131	1	130 (5.12)	90 (3.54)	65 (2.56)	118 (4.65)	-	78 (3.07)	M4×4, 20mm (0.79in.)	0.3 (0.66)
0001/	0.1 (0.13) to 0.75 (1)	0.3 to 1.9	10	LNFD-2103DY	72600-D2103DY	FIL 132	2	120 (4.72)	80 (3.15)	55 (2.17)	108 (4.25)	-	68 (2.68)	M4×4, 20mm (0.79in.)	0.2 (0.44)
200V Class	1.5 (2)	3.0	15	LNFD-2153DY	72600-D2153DY	FIL 133	2	120 (4.72)	80 (3.15)	55 (2.17)	108 (4.25)	-	68 (2.68)	M4×4, 20mm (0.79in.)	0.2 (0.44)
(Three- phase)	2.2 (3)	4.2	20	LNFD-2203DY	72600-D2203DY	FIL 134	2	170 (6.69)	90 (3.54)	70 (2.76)	158 (6.22)	-	78 (3.07)	M4×4, 20mm (0.79in.)	0.4 (0.88)
(phase)	3.7 (5)	6.7	30	LNFD-2303DY	72600-D2303DY	FIL 135	3	170 (6.69)	110 (4.33)	70 (2.76)	-	79 (3.11)	98 (3.86)	M4×6, 20mm (0.79in.)	0.5 (1.10)
400V	0.2 (0.25) to 0.75 (1)	0.9 to 2.6	5	LNFD-4053DY	72600-D4053DY	FIL 144	3	170 (6.69)	130 (5.12)	75 (2.95)	-	79 (3.11)	118 (4.65)	M4×6, 30mm (1.18in.)	0.3 (0.66)
Class /Three-\	1.5 (2), 2.2 (3)	3.7 to 4.2	10	LNFD-4103DY	72600-D4103DY	FIL 145	3	170 (6.69)	130 (5.12)	95 (3.94)	-	79 (3.11)	118 (4.65)	M4×6, 30mm (1.18in.)	0.4 (0.88)
(phase)	3.0 (2.2), 3.7 (5)	5.5 to 7.0	15	LNFD-4503DY	72600-D4153DY	FIL 146	3	170 (6.69)	130 (5.12)	95 (3.94)	-	79 (3.11)	118 (4.65)	M4×6, 30mm (1.18in.)	0.4 (0.88)

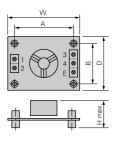


Figure 1 (Single-phase input)

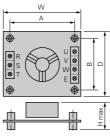
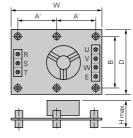
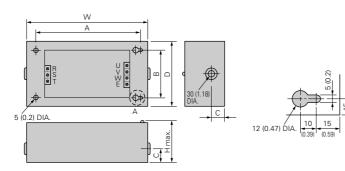



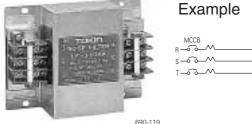
Figure 2 (Three-phase input)


Note: When using CE standard Inverters, the special EMC-compatible Noise Filter is required.

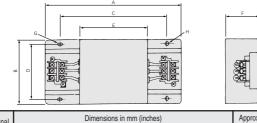
Contact your Yaskawa representative.

Figure 3 (Three-phase input)

Noise Filter with Case


Specifi-	Max. Applicable Motor Output	Inverter Capacity	Rated Current	Model	Product Code	Parts Codes No.			Dimensions in	n mm (inches)			Mounting Screw	Approx. Mass
cations	kW (HP)	kVA	A	WOUEI	FIGURE	Fails Codes No.	W	D	Н	А	В	С	Mounting Screw	kg (lb)
0001/	0.1 (0.13), 0.2 (0.25)	0.3, 0.6	10	LNFB-2102HY	72600-B2102HY	FIL 136	185 (7.28)	95 (3.74)	85 (3.35)	155 (6.10)	65 (2.56)	33 (1.30)	M4×4, 10mm (0.39in.)	0.8 (1.77)
200V Class	0.4 (0.5)	1.1	15	LNFB-2152HY	72600-B2152HY	FIL 137	185 (7.28)	95 (3.74)	85 (3.35)	155 (6.10)	65 (2.56)	33 (1.30)	M4×4, 10mm (0.39in.)	0.8 (1.77)
(Signle-)	0.75 (1)	1.9	20	LNFB-2202HY	72600-B2202HY	FIL 138	185 (7.28)	95 (3.74)	85 (3.35)	155 (6.10)	65 (2.56)	33 (1.30)	M4×4, 10mm (0.39in.)	0.9 (1.99)
(pridde /	1.5 (2)	3.0	30	LNFB-2302HY	72600-B2302HY	FIL 139	200 (7.87)	105 (4.13)	95 (3.74)	170 (6.69)	75 (2.95)	33 (1.30)	M4×4, 10mm (0.39in.)	1.1 (2.43)
0001/	0.1 (0.13) to 0.75 (1)	0.3 to 1.9	10	LNFD-2103HY	72600-D2103HY	FIL 140	185 (7.28)	95 (3.74)	85 (3.35)	155 (6.10)	65 (2.56)	33 (1.30)	M4×4, 10mm (0.39in.)	0.9 (1.99)
200V Class	1.5 (2)	3.0	15	LNFD-2153HY	72600-D2153HY	FIL 141	185 (7.28)	95 (3.74)	85 (3.35)	155 (6.10)	65 (2.56)	33 (1.30)	M4×4, 10mm (0.39in.)	0.9 (1.99)
(Three- phase)	2.2 (3)	4.2	20	LNFD-2203HY	72600-D2203HY	FIL 142	240 (9.45)	125 (4.92)	100 (3.94)	210 (8.27)	95 (3.74)	33 (1.30)	M4×4, 10mm (0.39in.)	1.5 (3.31)
(pridde)	3.7 (5)	6.7	30	LNFD-2303HY	72600-D2303HY	FIL 143	240 (9.45)	125 (4.92)	100 (3.94)	210 (8.27)	95 (3.74)	33 (1.30)	M4×4, 10mm (0.39in.)	1.6 (3.53)
400V	0.2 (0.25) to 0.75 (1)	0.9 to 2.6	5	LNFD-4053HY	72600-D4053HY	FIL 149	235 (9.25)	140 (5.51)	120 (4.72)	205 (8.07)	110 (4.33)	43 (1.69)	M4×4, 10mm (0.39in.)	1.6 (3.53)
Class /Three-\	1.5 (2), 2.2 (3)	3.7 to 4.2	10	LNFD-4103HY	72600-D4103HY	FIL 150	235 (9.25)	140 (5.51)	120 (4.72)	205 (8.07)	110 (4.33)	43 (1.69)	M4×4, 10mm (0.39in.)	1.7 (3.75)
(phase)	3.0 (2.2), 3.7 (5)	5.5 to 7.0	15	LNFD-4153HY	72600-D4153HY	FIL 151	235 (9.25)	140 (5.51)	120 (4.72)	205 (8.07)	110 (4.33)	43 (1.69)	M4×4, 10mm (0.39in.)	1.7 (3.75)

Example three-phase input.


Output Noise Filter

(Tohoku Metal Industries Co., Ltd.)

VS mini J7 OUTPUT NOISE FILTER N 40 IM ¢2 50

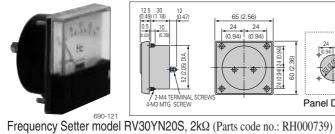
Dimensions

Model	Terminal			Dir	nensions	in mm (in	ches)			Approx. Mass
woder	Plate	А	В	С	D	E	F	G	Н	kg (lb)
LF-310KA	TE-K55M4	140 (5.51)	100 (3.94)	100 (3.94)	90 (3.54)	70 (2.76)	45 (1.77)	7×4.5 (0.18) dia.	4.5 (0.18) dia.	0.5 (1.10)
LF-320KA	TE-K55M4	140 (5.51)	100 (3.94)	100 (3.94)	90 (3.54)	70 (2.76)	45 (1.77)	7×4.5 (0.18) dia.	4.5 (0.18) dia.	0.6 (1.32)
LF-310KB	TE-K55M4	140 (5.51)	100 (3.94)	100 (3.94)	90 (3.54)	70 (2.76)	45 (1.77)	7×4.5 (0.18) dia.	4.5 (0.18) dia.	0.5 (1.00)

Frequency Meter Adjusting Potentiometer

200V Class: 300V full-scale (Parts code no.: VM000481)

Specifications


200V Class (Three-phase)

Max. Applicable Motor Output kW (HP)	Inverter Capacity kVA	Model	Rated Current A	Part Code No.
0.1 (0.13)	0.3	LF-310KA	10	FIL 000068
0.2 (0.25)	0.6	LF-310KA	10	FIL 000068
0.4 (0.5)	1.1	LF-310KA	10	FIL 000068
0.75 (1)	1.9	LF-310KA	10	FIL 000068
1.5 (2)	3.0	LF-310KA	10	FIL 000068
2.2 (3)	4.2	LF-320KA	20	FIL 000069
3.7 (5)	6.7	LF-320KA	20	FIL 000069

400V Class (Three-phase)

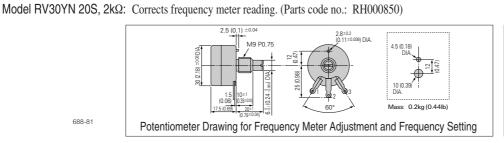
Max. Applicable Motor Output kW (HP)	Inverter Capacity kVA	Model	Rated Current A	Part Code No.
0.2 (0.25), 0.4 (0.5)	0.9, 1.4	LF-310KB	10	FIL 000071
0.75 (1)	2.6	LF-310KB	10	FIL 000071
1.5 (2)	3.7	LF-310KB	10	FIL 000071
2.2 (3)	4.2	LF-310KB	10	FIL 000071
3.0 (2.2), 3.7 (5)	5.5, 7.0	LF-310KB	10	FIL 000071

Frequency Meter MODEL DCF-6A*, 3V, 1mA : Analog frequency indicating meter is available as an option.

$\begin{array}{c} 125 & 30 \\ 0.49 \\ 11.18 \\ 10.29$
4-M3 MTG. SCREW Panel Drilling Plan

Output Voltmeter (Model SCF-12NH Rectification Type Class 2.5)

Scale parts code no.

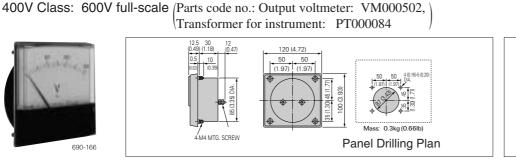

75Hz full scale: FM000065 60/120Hz full scale: FM000085

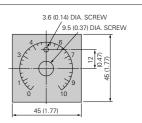
*DCF-6A is 3V, 1mA, 3kΩ.

For VS mini J7 multi-function analog monitor output, set frequency meter adjusting potentiometer or constant n45 (analog monitor output gain) within the range of 0 to 3V (Inilial setting is 0 to 10V).

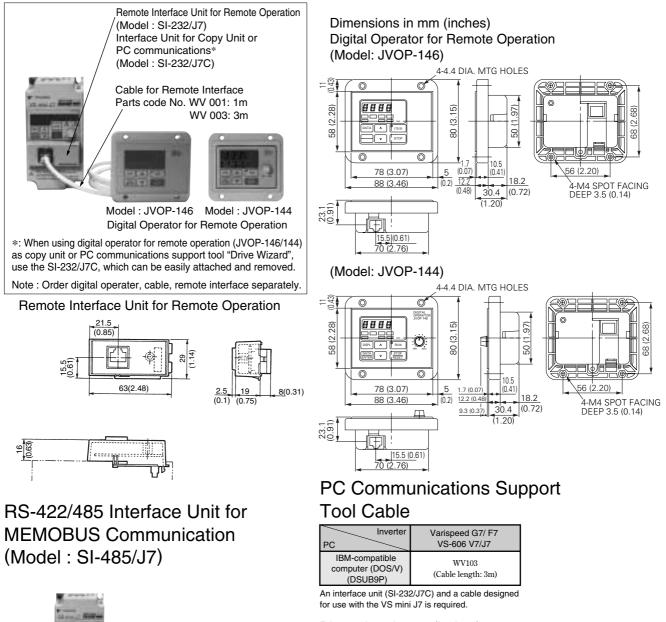
Frequency Setting Knob (Model CM-3S)

Used to adjust potentiometer frequency setting.


6 (0.24) DIA Scale Plate

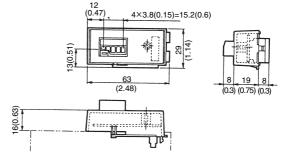

SHAFT

(Parts code no.: NPJT41561-1)



688-81

Digital Operator for Remote Operation (Model : JVOP-146/144) Remote Interface Unit for Remote Operation (Model : SI-232/J7) Interface Unit for Copy Unit (Model : SI-232/J7C)



Communication Cable Connector

Note : The communication cable connector is included with this unit.

Dimensions in mm (inches)

SERVICE NETWORK

VS mini J7

Region	Service Area	Service Location	Service Agency	Telephone/Fax
North America	U.S.A	Chicago(HQ) Los Angeles New Jersey Boston San Francisco, Ohio North Carolina	• YASKAWA ELECTRIC AMERICA INC.	Headquarters 2 +1-847-887-7303 FAX +1-847-887-7070
	Mexico	Mexico City	2 PILLAR MEXICANA. S.A. DE C.V.	a +52-5593-28-69 FAX +52-5651-55-73
South	South America	Sao Pãulo	YASKAWA ELÉCTRICO DO BRASIL COMÉRCIO LTD.A.	a +55-11-5071-2552 FAX +55-11-5581-8795
America	Colombia	Santafe De Bogota	• VARIADORES LTD. A.	a +57-91-635-7460 FAX +57-91-611-3872
Europe	All of Europe and South Africa	Frankfurt	YASKAWA Electric EUROPE GmbH	Headquarters 2 +49-6196-569-300 FAX +49-6196-569-398
			• YASKAWA ELECTRIC KOREA Co.	2 +82-2-784-7844 FAX +82-2-784-8495
	South Korea	Seoul	• YASKAWA ENGINEERING KOREA Co.	2 +82-2-3775-0337 FAX +82-2-3775-0338
			SAMSUNG Electronics Co.,Ltd.	2 +82-331-200-2981 FAX +82-331-200-2970
	China	Beijing, Guangzhou,	• YASKAWA ELECTRIC (SHANGHAI) Co., Ltd.	a +86-21-5385-2200 FAX +86-21-5385-3299
	China	Shanghai	Shanghai Yaskawa-Tongji M&E Co.,Ltd.	a +86-21-6553-6060 FAX +86-21-5588-1190
Asia	Taiwan	Taipei	• YASKAWA ELECTRIC TAIWAN Co.	a +886-2-2502-5003 FAX +886-2-2505-1280
	Singapore	Singapore	YASKAWA ELECTRIC (SINGAPORE) Pte. Ltd.	a +65-6282-3003 FAX +65-6289-3003
	Singapore	Singapore	YASKAWA ENGINEERING ASIA-PACIFIC Pte. Ltd.	a +65-6282-1601 FAX +65-6282-3668
	Thailand	Bangkok	YASKAWA ELECTRIC (THAILAND) Co.,Ltd.	a +66-2-693-2200 FAX +66-2-693-2204
	India	Mumbai	LARSEN & TOUBRO LIMITED	Headquarters 2 +91-22-7683511(662) FAX +91-22-7683525
Oceania	Australia	Sydney(HQ) Melbourne	© ROBOTIC AUTOMATION Pty. Ltd.	Headquarters 2 +61-2-9748-3788 FAX +61-2-9748-3817

VS mini J7

IRUMA BUSINESS CENTER (SOLUTION CENTER)

480, Kamifujisawa, Iruma, Saitama 358-8555, Japan Phone 81-4-2962-5696 Fax 81-4-2962-6138

YASKAWA ELECTRIC AMERICA, INC. 2121 Norman Drive South, Waukegan, IL 60085, U.S.A. Phone 1-847-887-7000 Fax 1-847-887-7370

YASKAWA ELÉTRICO DO BRASIL LTDA

Avenida Fagundes Filho, 620 Bairro Saude-Sao Pãulo-SP, Brazil CEP: 04304-000 Phone 55-11-5071-2552 Fax 55-11-5581-8795

YASKAWA ELECTRIC EUROPE GmbH Am Kronberger Hang 2, 65824 Schwalbach, Germany Phone 49-6196-569-300 Fax 49-6196-569-312

YASKAWA ELECTRIC UK LTD. 1 Hunt Hill Orchardton Woods Cumbernauld, G68 9LF, United Kingdom Phone 44-1236-735000 Fax 44-1236-458182

YASKAWA ELECTRIC KOREA CORPORATION

7F, Doore Bldg. 24, Yeoido-dong, Youngdungpo-Ku, Seoul 150-877, Korea Phone 82-2-784-7844 Fax 82-2-784-8495

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD. 151 Lorong Chuan, #04-01, New Tech Park 556741, Singapore Phone 65-6282-3003 Fax 65-6289-3003

YASKAWA ELECTRIC (SHANGHAI) CO., LTD.

No.18 Xizang Zhong Road. Room 1702-1707, Harbour Ring Plaza Shanghai 200001, China Phone 86-21-5385-2200 Fax 86-21-5385-3299

YASKAWA ELECTRIC (SHANGHAI) CO., LTD. BEIJING OFFICE Room 1011A, Tower W3 Oriental Plaza, No.1 East Chang An Ave., Dong Cheng District, Beijing 100738, China Phone 86-10-8518-4086 Fax 86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION 9F, 16, Nanking E. Rd., Sec. 3, Taipei, Taiwan Phone 886-2-2502-5003 Fax 886-2-2505-1280

YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply. Specifications are subject to change without notice for ongoing product modifications and improvements.

© 1998-2007 YASKAWA ELECTRIC CORPORATION. All rights reserved.

LITERATURE NO. KAE-S606-12F Published in Japan September 2007 98-12 (1)-0 07-8-9 Printed on 100% recycled paper